A. HeppesAlfréd Rényi Institute of the Hungarian Academy of Sciences Reáltanoda u. 13-15, H-1053 Budapest, Hungary Reáltanoda u. 13-15, H-1053 Budapest, Hungary
The problem of covering a circle, a square or a regular triangle with
\documentclass{aastex}
\usepackage{amsbsy}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{mathrsfs}
\usepackage{pifont}
\usepackage{stmaryrd}
\usepackage{textcomp}
\usepackage{upgreek}
\usepackage{portland,xspace}
\usepackage{amsmath,amsxtra}
\pagestyle{empty}
\DeclareMathSizes{10}{9}{7}{6}
\begin{document}
$n$
\end{document}
congruent circles of minimum diameter (the {\it circle covering} problem)
has been investigated by a number of authors and the smallest diameter has been
found for several values of \documentclass{aastex}
\usepackage{amsbsy}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{mathrsfs}
\usepackage{pifont}
\usepackage{stmaryrd}
\usepackage{textcomp}
\usepackage{upgreek}
\usepackage{portland,xspace}
\usepackage{amsmath,amsxtra}
\pagestyle{empty}
\DeclareMathSizes{10}{9}{7}{6}
\begin{document}
$n$
\end{document}. This paper is devoted to the study of an
analogous problem, the {\it diameter covering} problem, in which the shape and
congruence of the covering pieces is relaxed and -- invariably -- the maximal
diameter of the pieces is minimized. All cases are considered when the solution
of the first problem is known and in all but one case the diameter covering
problem is solved.