Author:
A. Heppes Alfréd Rényi Institute of the Hungarian Academy of Sciences Reáltanoda u. 13-15, H-1053 Budapest, Hungary Reáltanoda u. 13-15, H-1053 Budapest, Hungary

Search for other papers by A. Heppes in
Current site
Google Scholar
PubMed
Close
Restricted access

Summary  

The problem of covering a circle, a square or a regular triangle with \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $n$ \end{document} congruent circles of minimum diameter (the {\it circle covering} problem) has been investigated by a number of authors and the smallest diameter has been found for several values of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $n$ \end{document}. This paper is devoted to the study of an analogous problem, the {\it diameter covering} problem, in which the shape and congruence of the covering pieces is relaxed and -- invariably -- the maximal diameter of the pieces is minimized. All cases are considered when the solution of the first problem is known and in all but one case the diameter covering problem is solved.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Periodica Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1971
Volumes
per Year
2
Issues
per Year
4
Founder Bolyai János Matematikai Társulat - János Bolyai Mathematical Society
Founder's
Address
H-1055 Budapest, Hungary Falk Miksa u. 12.I/4.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0031-5303 (Print)
ISSN 1588-2829 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Mar 2024 2 0 0
Apr 2024 9 0 0
May 2024 0 0 0
Jun 2024 7 0 1
Jul 2024 12 0 0
Aug 2024 5 0 0
Sep 2024 10 0 0