View More View Less
  • 1 Department of Mathematics and Statistics, University of Calgary & Department of Geometry Eötvös Loránd University 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada & Pázmány Péter sétány 1/c H-1117 Budapest, Hungary 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada & Pázmány Péter sétány 1/c H-1117 Budapest, Hungary
Restricted access

Summary  

The Illumination Conjecture was raised independently by Boltyanski and Hadwiger in 1960. According to this conjecture any \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $d$ \end{document}-dimensional convex body can be illuminated by at most \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $2^d$ \end{document} light sources. This is an important fundamental problem. The paper surveys the state of the art of the Illumination Conjecture.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 0 0
Jul 2020 0 0 0
Aug 2020 1 0 0
Sep 2020 0 0 0
Oct 2020 0 0 0
Nov 2020 0 0 0
Dec 2020 0 0 0