View More View Less
  • 1 Department of Geometry, Eötvös Loránd University Pázmány Péter sétány 1/c H-1117 Budapest, Hungary Pázmány Péter sétány 1/c H-1117 Budapest, Hungary
  • 2 Alfréd Rényi Institute of Mathematics & Department of Geometry, Eötvös Loránd University Pázmány Péter sétány 1/c H-1117 Budapest, Hungary & H--1364, Budapest, P.O. Box 127, Hungary Pázmány Péter sétány 1/c H-1117 Budapest, Hungary & H--1364, Budapest, P.O. Box 127, Hungary
  • 3 Department of Geometry, Eötvös Loránd University Pázmány Péter sétány 1/c H-1117 Budapest, Hungary Pázmány Péter sétány 1/c H-1117 Budapest, Hungary
Restricted access

Summary  

Given \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $r>1$ \end{document}, we search for the convex body of minimal volume in \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\mathbb{E}^3$ \end{document} that contains a unit ball, and whose extreme points are of distance at least \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $r$ \end{document} from the centre of the unit ball. It is known that the extremal body is the regular octahedron and icosahedron for suitable values of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $r$ \end{document}. In this paper we prove that if \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $r$ \end{document} is close to one then the typical faces of the extremal body are asymptotically regular triangles. In addition we prove the analogous statement for the extremal bodies with respect to the surface area and the mean width.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 0 0
Jul 2020 0 0 0
Aug 2020 1 0 0
Sep 2020 0 0 0
Oct 2020 0 2 2
Nov 2020 0 1 1
Dec 2020 0 0 0