Author:
Csirmaz László Central European University Budapest Hungary Budapest Hungary

Search for other papers by Csirmaz László in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

A convex set is inscribed into a rectangle with sides a and 1/a so that the convex set has points on all four sides of the rectangle. By “rounding” we mean the composition of two orthogonal linear transformations parallel to the edges of the rectangle, which makes a unit square out of the rectangle. The transformation is also applied to the convex set, which now has the same area, and is inscribed into a square. One would expect this transformation to decrease the perimeter of the convex set as well. Interestingly, this is not always the case. For each a we determine the largest and smallest possible increase of the perimeter.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Periodica Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1971
Volumes
per Year
2
Issues
per Year
4
Founder Bolyai János Matematikai Társulat - János Bolyai Mathematical Society
Founder's
Address
H-1055 Budapest, Hungary Falk Miksa u. 12.I/4.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0031-5303 (Print)
ISSN 1588-2829 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2024 2 0 1
Jul 2024 0 0 0
Aug 2024 1 0 0
Sep 2024 8 0 0
Oct 2024 21 0 0
Nov 2024 11 0 0
Dec 2024 0 0 0