View More View Less
• 1 University College London Department of Mathematics Gower Street London WC1E 6BT UK
• | 2 University of Szeged Bolyai Institute Aradi vértanúk tere 1 H-6720 Szeged Hungary
• | 3 Auburn University Department of Mathematics and Statistics 221 Parker Hall Auburn AL 36849 USA
• | 4 MTA Rényi Institute Reáltanoda u. 13-15 Budapest Hungary
Restricted access

## Abstract

Consider a 3-dimensional point set
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{P}$$ \end{document}
which contains the incenters of all the nondegenerate tetrahedra with vertices from
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{P}$$ \end{document}
. In this paper we prove that then
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{P}$$ \end{document}
is dense in its convex hull. This settles the last unsolved variation in a sequence of similar questions initiated by D. Ismailescu, where he required to include other simplex centers, e.g. the orthocenters or the circumcenters. Our method allows us to generalize the planar incenter problem, showing that the denseness follows from a much weaker assumption for planar point sets.

Manuscript Submission: HERE

• Impact Factor (2019): 0.693
• Scimago Journal Rank (2019): 0.412
• SJR Hirsch-Index (2019): 20
• SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
• Impact Factor (2018): 0.664
• Scimago Journal Rank (2018): 0.412
• SJR Hirsch-Index (2018): 19
• SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

Periodica Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1971
Volumes
per Year
2
Issues
per Year
4
Founder Bolyai János Matematikai Társulat - János Bolyai Mathematical Society
Founder's
H-1055 Budapest, Hungary Falk Miksa u. 12.I/4.
Springer Nature Switzerland AG
Publisher's
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
ISSN 0031-5303 (Print)
ISSN 1588-2829 (Online)

Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 1 0 0
Sep 2021 0 0 0
Oct 2021 0 0 0
Nov 2021 1 0 0
Dec 2021 0 0 0

## UCB revisited: Improved regret bounds for the stochastic multi-armed bandit problem

Authors: Peter Auer and Ronald Ortner

## On pseudo quasi-Einstein manifolds

Author: Absos Shaikh

## Multiplication modules and projective modules

Author: P. F. Smith

## Eccentric sequences in graphs

Author: Linda Lesniak

## Projective limits of Banach-Lie groups

Author: George Galanis