Authors:
Sanka Balasuriya Macquarie University Department of Computing Sydney NSW 2109 Australia

Search for other papers by Sanka Balasuriya in
Current site
Google Scholar
PubMed
Close
and
Igor Shparlinski Macquarie University Department of Computing Sydney NSW 2109 Australia

Search for other papers by Igor Shparlinski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

Let χ be a primitive multiplicative character modulo an integer m ≥ 1. Using some classical bounds of character sums, we estimate the average value of the character sums with subsequence sums
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$T_m (\mathcal{S},\chi ) = \sum\nolimits_{\mathcal{I} \subseteq \{ 1, \ldots ,N\} } {\chi (\sum\nolimits_{i \in \mathcal{I}} {s_i } )}$$ \end{document}
taken over all N-element sequences S = (s1, …, sN) of integer elements in a given interval [K + 1, K + L]. In particular, we show that Tm(S, χ) is small on average over all such sequences. We apply it to estimating the number of perfect squares in subsequence sums in almost all sequences.
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Periodica Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1971
Volumes
per Year
2
Issues
per Year
4
Founder Bolyai János Matematikai Társulat - János Bolyai Mathematical Society
Founder's
Address
H-1055 Budapest, Hungary Falk Miksa u. 12.I/4.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0031-5303 (Print)
ISSN 1588-2829 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2024 7 0 0
Jan 2025 3 0 0
Feb 2025 6 0 0
Mar 2025 14 0 0
Apr 2025 7 0 0
May 2025 1 0 0
Jun 2025 0 0 0