View More View Less
  • 1 University of Mostaganem Department of Mathematics Box 227 Mostaganem 27000 Algeria
Restricted access

Abstract  

The most important result stated in this paper is to show that the solutions of the Poisson equation −Δu = f, where f

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{M}$$ \end{document}
(Ḣ1(ℝd) → (Ḣ−1(ℝd)) is a complex-valued distribution on ℝd, satisfy the regularity property Dku
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{M}$$ \end{document}
(Ḣ1 → Ḣ−1) for all k, |k| = 2. The regularity of this equation is well studied by Maz’ya and Verbitsky [12] in the case where f belongs to the class of positive Borel measures.

Manuscript Submission: HERE

  • Impact Factor (2019): 0.693
  • Scimago Journal Rank (2019): 0.412
  • SJR Hirsch-Index (2019): 20
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.664
  • Scimago Journal Rank (2018): 0.412
  • SJR Hirsch-Index (2018): 19
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)