Authors:
Zsolt Lángi Budapest University of Technology Dept. of Geometry Egry József u. 1. Budapest Hungary 1111

Search for other papers by Zsolt Lángi in
Current site
Google Scholar
PubMed
Close
and
Márton Naszódi University of Alberta Dept. of Math. and Stats. 632 Central Academic Building Edmonton AB Canada T6G 2G1

Search for other papers by Márton Naszódi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

We say that a convex set K in ℝdstrictly separates the set A from the set B if A ⊂ int(K) and B ⋂ cl K = ø. The well-known Theorem of Kirchberger states the following. If A and B are finite sets in ℝd with the property that for every TAB of cardinality at most d + 2, there is a half space strictly separating TA and TB, then there is a half space strictly separating A and B. In short, we say that the strict separation number of the family of half spaces in ℝd is d + 2. In this note we investigate the problem of strict separation of two finite sets by the family of positive homothetic (resp., similar) copies of a closed, convex set. We prove Kirchberger-type theorems for the family of positive homothets of planar convex sets and for the family of homothets of certain polyhedral sets. Moreover, we provide examples that show that, for certain convex sets, the family of positive homothets (resp., the family of similar copies) has a large strict separation number, in some cases, infinity. Finally, we examine how our results translate to the setting of non-strict separation.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Periodica Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1971
Volumes
per Year
2
Issues
per Year
4
Founder Bolyai János Matematikai Társulat - János Bolyai Mathematical Society
Founder's
Address
H-1055 Budapest, Hungary Falk Miksa u. 12.I/4.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0031-5303 (Print)
ISSN 1588-2829 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2024 4 0 1
Jul 2024 0 0 0
Aug 2024 7 0 0
Sep 2024 9 0 0
Oct 2024 26 0 0
Nov 2024 10 0 0
Dec 2024 2 0 0