View More View Less
  • 1 University of Calgary Department of Mathematics and Statistics Alberta T2P 1N4 Canada
Restricted access

Abstract  

It is shown that for every subdivision of the d-dimensional Euclidean space, d ≥ 2, into n convex cells, there is a straight line that stabs at least Ω((log n/log log n)1/(d−1)) cells. In other words, if a convex subdivision of d-space has the property that any line stabs at most k cells, then the subdivision has at most exp(O(kd−1 log k)) cells. This bound is best possible apart from a constant factor. It was previously known only in the case d = 2.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 0 0
Jul 2020 0 0 0
Aug 2020 1 0 0
Sep 2020 0 0 0
Oct 2020 0 0 0
Nov 2020 0 1 0
Dec 2020 0 0 0