Authors:
Balázs Csikós Eötvös University Department of Geometry Budapest P.O.B. 120 Hungary H-1518

Search for other papers by Balázs Csikós in
Current site
Google Scholar
PubMed
Close
,
György Kiss

Search for other papers by György Kiss in
Current site
Google Scholar
PubMed
Close
,
Konrad Swanepoel Technische Universität Chemnitz Fakultät für Mathematik Chemnitz 09107 Germany

Search for other papers by Konrad Swanepoel in
Current site
Google Scholar
PubMed
Close
, and
P. Oloff de Wet University of South Africa Department of Decision Science PO Box 392 UNISA 0003 Pretoria South Africa

Search for other papers by P. Oloff de Wet in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

A family {Ai | iI} of sets in ℝd is antipodal if for any distinct i, jI and any pAi, qAj, there is a linear functional ϕ:ℝd → ℝ such that ϕ(p) ≠ ϕ(q) and ϕ(p) ≤ ϕ(r) ≤ ϕ(q) for all r ∈ ∪iIAi. We study the existence of antipodal families of large finite or infinite sets in ℝ3.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Periodica Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1971
Volumes
per Year
2
Issues
per Year
4
Founder Bolyai János Matematikai Társulat - János Bolyai Mathematical Society
Founder's
Address
H-1055 Budapest, Hungary Falk Miksa u. 12.I/4.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0031-5303 (Print)
ISSN 1588-2829 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2024 4 0 1
Jul 2024 12 0 0
Aug 2024 5 0 0
Sep 2024 17 0 0
Oct 2024 39 0 0
Nov 2024 2 0 0
Dec 2024 0 0 0