View More View Less
  • 1 13, General Kutuzov Street, bl. 7, fl. 2, ap. 4 4003 Plovdiv Bulgaria
Restricted access

Abstract  

Let G be a p-reduced Abelian group and R a commutative unital ring of prime characteristic p such that for each natural number i the subring

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$R^{p^i }$$ \end{document}
has nilpotent elements. It is shown that if S(RG) is the normalized Sylow p-group in the group ring RG, then S(RG) is torsion-complete if and only if G is a bounded p-group. This strengthens our former results on this subject.