Author:
Peter Danchev 13, General Kutuzov Street, bl. 7, fl. 2, ap. 4 4003 Plovdiv Bulgaria

Search for other papers by Peter Danchev in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

Let G be a p-reduced Abelian group and R a commutative unital ring of prime characteristic p such that for each natural number i the subring
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$R^{p^i }$$ \end{document}
has nilpotent elements. It is shown that if S(RG) is the normalized Sylow p-group in the group ring RG, then S(RG) is torsion-complete if and only if G is a bounded p-group. This strengthens our former results on this subject.
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Periodica Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1971
Volumes
per Year
2
Issues
per Year
4
Founder Bolyai János Matematikai Társulat - János Bolyai Mathematical Society
Founder's
Address
H-1055 Budapest, Hungary Falk Miksa u. 12.I/4.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0031-5303 (Print)
ISSN 1588-2829 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2024 21 0 0
May 2024 1 0 0
Jun 2024 3 0 1
Jul 2024 0 0 0
Aug 2024 4 0 0
Sep 2024 7 0 0
Oct 2024 0 0 0