Authors:
Francis Hirsch Laboratoire d’Analyse et Probabilités, Université d’Évry Val d’Essonne, Boulevard F. Mitterrand, F-91025 Évry Cedex, France

Search for other papers by Francis Hirsch in
Current site
Google Scholar
PubMed
Close
,
Bernard Roynette Institut Elie Cartan, Université Henri Poincaré, B.P. 239, F-54506 Vandœuvre-lès-Nancy Cedex, France

Search for other papers by Bernard Roynette in
Current site
Google Scholar
PubMed
Close
, and
Marc Yor Institut Universitaire de France, Laboratoire de Probabilités et Modèles Aléatoires, Université Paris VI et VII, 4 Place Jussieu — Case 188, F-75252 Paris Cedex 05, France

Search for other papers by Marc Yor in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

Strongly inspired by the result due to Carr-Ewald-Xiao that the arithmetic average of geometric Brownian motion is an increasing process in the convex order, we extend this result to integrals of Lévy processes and Gaussian processes. Our method consists in finding an appropriate sheet associated to the original Lévy or Gaussian process, from which the one-dimensional marginals of the integrals will appear to be those of a martingale, thus proving the increase in the convex order property.

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Periodica Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1971
Volumes
per Year
2
Issues
per Year
4
Founder Bolyai János Matematikai Társulat - János Bolyai Mathematical Society
Founder's
Address
H-1055 Budapest, Hungary Falk Miksa u. 12.I/4.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0031-5303 (Print)
ISSN 1588-2829 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2024 3 0 0
Dec 2024 1 0 0
Jan 2025 8 0 0
Feb 2025 4 0 0
Mar 2025 3 0 0
Apr 2025 1 0 0
May 2025 2 0 0