Authors:
Peter AuerLehrstuhl für Informationstechnologie, Montanuniversität Leoben, Franz-Josef-Straße 18, A-8700 Leoben, Austria

Search for other papers by Peter Auer in
Current site
Google Scholar
PubMed
Close
and
Ronald OrtnerLehrstuhl für Informationstechnologie, Montanuniversität Leoben, Franz-Josef-Straße 18, A-8700 Leoben, Austria

Search for other papers by Ronald Ortner in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

In the stochastic multi-armed bandit problem we consider a modification of the UCB algorithm of Auer et al. [4]. For this modified algorithm we give an improved bound on the regret with respect to the optimal reward. While for the original UCB algorithm the regret in K-armed bandits after T trials is bounded by const ·
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\frac{{K\log (T)}} {\Delta }$$ \end{document}
, where Δ measures the distance between a suboptimal arm and the optimal arm, for the modified UCB algorithm we show an upper bound on the regret of const ·
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\frac{{K\log (T\Delta ^2 )}} {\Delta }$$ \end{document}
.
  • Collapse
  • Expand
  • Top

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Periodica Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1971
Volumes
per Year
2
Issues
per Year
4
Founder Bolyai János Matematikai Társulat - János Bolyai Mathematical Society
Founder's
Address
H-1055 Budapest, Hungary Falk Miksa u. 12.I/4.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0031-5303 (Print)
ISSN 1588-2829 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Mar 2022 22 0 0
Apr 2022 20 1 2
May 2022 26 3 4
Jun 2022 30 5 7
Jul 2022 8 1 1
Aug 2022 16 0 0
Sep 2022 0 0 0