Authors:
István Berkes Institute of Statistics, Graz University of Technology, Münzgrabenstrasse 11, A-8010 Graz, Austria

Search for other papers by István Berkes in
Current site
Google Scholar
PubMed
Close
,
Wolfgang Müller Institute of Statistics, Graz University of Technology, Münzgrabenstrasse 11, A-8010 Graz, Austria

Search for other papers by Wolfgang Müller in
Current site
Google Scholar
PubMed
Close
, and
Michel Weber IRMA, Université Louis-Pasteur et C.N.R.S., 7 rue René Descartes, 67084 Strasbourg Cedex, France

Search for other papers by Michel Weber in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract  

Let f(n) be a strongly additive complex-valued arithmetic function. Under mild conditions on f, we prove the following weighted strong law of large numbers: if X,X1,X2, … is any sequence of integrable i.i.d. random variables, then

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathop {\lim }\limits_{N \to \infty } \frac{{\sum\nolimits_{n = 1}^N {f(n)X_n } }} {{\sum\nolimits_{n = 1}^N {f(n)} }} = \mathbb{E}Xa.s.$$ \end{document}

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Periodica Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1971
Volumes
per Year
2
Issues
per Year
4
Founder Bolyai János Matematikai Társulat - János Bolyai Mathematical Society
Founder's
Address
H-1055 Budapest, Hungary Falk Miksa u. 12.I/4.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0031-5303 (Print)
ISSN 1588-2829 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2024 7 1 0
Mar 2024 11 0 0
Apr 2024 10 1 0
May 2024 6 0 0
Jun 2024 27 0 1
Jul 2024 1 0 0
Aug 2024 0 0 0