View More View Less
  • 1 Mathematical Department, Åbo Akademi University, Fänriksgatan 3 B, FIN-20500 Åbo, Finland
  • | 2 Laboratoire de Probabilités et Modèles aléatoires, Université Pierre et Marie Curie, 4, Place Jussieu, Case 188, F-75252 Paris Cedex 05, France
Restricted access


Firstly, we compute the distribution function for the hitting time of a linear time-dependent boundary ta + bt, a ≥ 0, b ∈ ℝ, by a reflecting Brownian motion. The main tool hereby is Doob’s formula which gives the probability that Brownian motion started inside a wedge does not hit this wedge. Other key ingredients are the time inversion property of Brownian motion and the time reversal property of diffusion bridges. Secondly, this methodology can also be applied for the three-dimensional Bessel process. Thirdly, we consider Bessel bridges from 0 to 0 with dimension parameter δ > 0 and show that the probability that such a Bessel bridge crosses an affine boundary is equal to the probability that this Bessel bridge stays below some fixed value.

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Periodica Mathematica Hungarica
Language English
Size B5
Year of
per Year
per Year
Founder Bolyai János Matematikai Társulat - János Bolyai Mathematical Society
H-1055 Budapest, Hungary Falk Miksa u. 12.I/4.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 0031-5303 (Print)
ISSN 1588-2829 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2021 0 0 0
Jan 2022 1 0 0
Feb 2022 1 0 0
Mar 2022 1 0 0
Apr 2022 0 0 0
May 2022 3 0 0
Jun 2022 0 0 0