View More View Less
  • 1 Stanford Graduate Fellow, Department of Statistics, Stanford University, Stanford, USA
  • 2 Statistics and Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, 700108 India
Restricted access


We use the method of moments to establish the limiting spectral distribution (LSD) of appropriately scaled large dimensional random symmetric circulant, reverse circulant, Toeplitz and Hankel matrices which have suitable band structures. The input sequence used to construct these matrices is assumed to be either i.i.d. with mean zero and variance one or independent and appropriate finite fourth moment. The class of LSD includes the normal and the symmetrized square root of chi-square with two degrees of freedom. In several other cases, explicit forms of the limit do not seem to be obtainable but the limits can be shown to be symmetric and their second and the fourth moments can be calculated with some effort. Simulations suggest some further properties of the limits.