Authors:
Bo He Department of Mathematics, ABa Teacher’s College Wenchuan, Sichuan, 623000 P. R. China

Search for other papers by Bo He in
Current site
Google Scholar
PubMed
Close
and
Alain Togbé Department of Mathematics, Purdue University North Central, 1401 S. U.S. 421, Westville, IN 46391, USA

Search for other papers by Alain Togbé in
Current site
Google Scholar
PubMed
Close
Restricted access

## Abstract

Let A and k be positive integers. In this paper, we study the Diophantine quadruples

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\{ k,A^2 k + 2A,(A + 1)^2 k + 2(A + 1)d\} .$$ \end{document}
If d is a positive integer such that the product of any two distinct elements of the set increased by 1 is a perfect square, then
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\begin{gathered} d = (4A^4 + 8A^3 + 4A^2 )k^3 + (16A^3 + 24A^2 + 8A)k^2 + \hfill \\ + (20A^2 + 20A + 4)k + (8A + 4) \hfill \\ \end{gathered}$$ \end{document}
for A ≥ 52330 and any k. This extends our result obtained in [4].

• Collapse
• Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Periodica Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1971
Volumes
per Year
2
Issues
per Year
4
Founder Bolyai János Matematikai Társulat - János Bolyai Mathematical Society
Founder's
Address
H-1055 Budapest, Hungary Falk Miksa u. 12.I/4.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0031-5303 (Print)
ISSN 1588-2829 (Online)

### Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2024 8 0 2
Mar 2024 4 0 0
Apr 2024 34 0 0
May 2024 32 0 0
Jun 2024 16 0 1
Jul 2024 2 0 0
Aug 2024 0 0 0

Author:

Authors: and

## Anonymous sealed bid auction protocol based on a variant of the dining cryptographers’ protocol

Authors: , , , and

## The size Ramsey number

Authors: , , , and

Author: