Author: R. Nair 1
View More View Less
  • 1 Pure Mathematics Division, Mathematical Sciences, University of Liverpool, Liverpool, L69 7ZL UK
Restricted access

Abstract  

Let S be a countable semigroup acting in a measure-preserving fashion (gTg) on a measure space (Ω, A, µ). For a finite subset A of S, let |A| denote its cardinality. Let (Ak)k=1 be a sequence of subsets of S satisfying conditions related to those in the ergodic theorem for semi-group actions of A. A. Tempelman. For A-measureable functions f on the measure space (Ω, A, μ) we form for k ≥ 1 the Templeman averages

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\pi _k (f)(x) = \left| {A_k } \right|^{ - 1} \sum\nolimits_{g \in A_k } {T_g f(x)}$$ \end{document}
and set Vqf(x) = (Σk≥1|πk+1(f)(x) − πk(f)(x)|q)1/q when q ∈ (1, 2]. We show that there exists C > 0 such that for all f in L1(Ω, A, µ) we have µ({x ∈ Ω: Vqf(x) > λ}) ≤ C(∫Ω | f | dµ/λ). Finally, some concrete examples are constructed.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 0 0
Jul 2020 0 0 0
Aug 2020 1 0 0
Sep 2020 0 0 0
Oct 2020 0 0 0
Nov 2020 0 0 0
Dec 2020 0 0 0