Author:
R. Nair Pure Mathematics Division, Mathematical Sciences, University of Liverpool, Liverpool, L69 7ZL UK

Search for other papers by R. Nair in
Current site
PubMed
Close
Restricted access

## Abstract

Let S be a countable semigroup acting in a measure-preserving fashion (gTg) on a measure space (Ω, A, µ). For a finite subset A of S, let |A| denote its cardinality. Let (Ak)k=1 be a sequence of subsets of S satisfying conditions related to those in the ergodic theorem for semi-group actions of A. A. Tempelman. For A-measureable functions f on the measure space (Ω, A, μ) we form for k ≥ 1 the Templeman averages
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\pi _k (f)(x) = \left| {A_k } \right|^{ - 1} \sum\nolimits_{g \in A_k } {T_g f(x)}$$ \end{document}
and set Vqf(x) = (Σk≥1|πk+1(f)(x) − πk(f)(x)|q)1/q when q ∈ (1, 2]. We show that there exists C > 0 such that for all f in L1(Ω, A, µ) we have µ({x ∈ Ω: Vqf(x) > λ}) ≤ C(∫Ω | f | dµ/λ). Finally, some concrete examples are constructed.
• Collapse
• Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Periodica Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1971
Volumes
per Year
2
Issues
per Year
4
Founder Bolyai János Matematikai Társulat - János Bolyai Mathematical Society
Founder's
H-1055 Budapest, Hungary Falk Miksa u. 12.I/4.
Springer Nature Switzerland AG
Publisher's
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
ISSN 0031-5303 (Print)
ISSN 1588-2829 (Online)

Feb 2024 18 1 0
Mar 2024 21 0 0
Apr 2024 12 0 0
May 2024 9 0 0
Jun 2024 18 0 1
Jul 2024 2 0 0
Aug 2024 1 0 0

Author:

Authors: and

## Anonymous sealed bid auction protocol based on a variant of the dining cryptographers’ protocol

Authors: , , , and

## The size Ramsey number

Authors: , , , and

Author: