View More View Less
  • 1 Institut für Mathematik und Wissenschaftliches Rechnen, Karl-Franzens-Universität Graz, Heinrichstraße 36, 8010 Graz, Austria
Restricted access

Abstract  

Let

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$G = C_{n_1 } \oplus \cdots \oplus C_{n_r }$$ \end{document}
with 1 < n1 | … | nr be a finite abelian group, d*(G) = n1 +…+nrr, and let d(G) denote the maximal length of a zerosum free sequence over G. Then d(G) ≥ d*(G), and the standing conjecture is that equality holds for G = Cnr. We show that equality does not hold for C2C2nr, where n ≥ 3 is odd and r ≥ 4. This gives new information on the structure of extremal zero-sum free sequences over C2nr.

  • Impact Factor (2019): 0.693
  • Scimago Journal Rank (2019): 0.412
  • SJR Hirsch-Index (2019): 20
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.664
  • Scimago Journal Rank (2018): 0.412
  • SJR Hirsch-Index (2018): 19
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

Manuscript Submission: HERE