View More View Less
  • 1 Department of Technical Physics and Applied Mathematics, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • 2 Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
Restricted access

Abstract  

The distance dG(u, v) between two vertices u and v in a connected graph G is the length of the shortest uv-path in G. A uv-path of length dG(u, v) is called a uv-geodesic. A set X is convex in G if vertices from all ab-geodesics belong to X for any two vertices a, bX. The convex domination number γcon(G) of a graph G equals the minimum cardinality of a convex dominating set. In the paper, Nordhaus-Gaddum-type results for the convex domination number are studied.