Authors: , , and
View More View Less
• 1 Department of Mathematics and Informatics, Weinan Teachers University, Weinan City, Shaanxi Province, 714000 China
• | 2 School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010 China
Restricted access

Abstract

The psi function ψ(x) is defined by ψ(x) = Γ′(x)/Γ(x) and ψ(i)(x), for i ∈ ℕ, denote the polygamma functions, where Γ(x) is the gamma function. In this paper, we prove that the functions
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$[\psi '(x)]^2 + \psi ''(x) - \frac{{x^2 + 12}} {{12x^4 (x + 1)^2 }}$$ \end{document}
and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\frac{{x + 12}} {{12x^4 (x + 1)}} - \{ [\psi '(x)]^2 + \psi ''(x)\}$$ \end{document}
are completely monotonic on (0,∞).

Manuscript Submission: HERE

• Impact Factor (2019): 0.693
• Scimago Journal Rank (2019): 0.412
• SJR Hirsch-Index (2019): 20
• SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
• Impact Factor (2018): 0.664
• Scimago Journal Rank (2018): 0.412
• SJR Hirsch-Index (2018): 19
• SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

Periodica Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1971
Volumes
per Year
2
Issues
per Year
4
Founder Bolyai János Matematikai Társulat - János Bolyai Mathematical Society
Founder's
H-1055 Budapest, Hungary Falk Miksa u. 12.I/4.
Springer Nature Switzerland AG
Publisher's
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
ISSN 0031-5303 (Print)
ISSN 1588-2829 (Online)

Jun 2021 2 0 0
Jul 2021 0 0 0
Aug 2021 5 0 0
Sep 2021 3 0 0
Oct 2021 2 0 0
Nov 2021 3 0 0
Dec 2021 0 0 0

UCB revisited: Improved regret bounds for the stochastic multi-armed bandit problem

Authors: Peter Auer and Ronald Ortner

Multiplication modules and projective modules

Author: P. F. Smith