Authors: , and
View More View Less
• 1 Department of Mathematics and Informatics, Weinan Teachers University, Weinan City, Shaanxi Province, 714000 China
• 2 School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010 China
Restricted access

## Abstract

The psi function ψ(x) is defined by ψ(x) = Γ′(x)/Γ(x) and ψ(i)(x), for i ∈ ℕ, denote the polygamma functions, where Γ(x) is the gamma function. In this paper, we prove that the functions

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$[\psi '(x)]^2 + \psi ''(x) - \frac{{x^2 + 12}} {{12x^4 (x + 1)^2 }}$$ \end{document}
and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\frac{{x + 12}} {{12x^4 (x + 1)}} - \{ [\psi '(x)]^2 + \psi ''(x)\}$$ \end{document}
are completely monotonic on (0,∞).

Author: L. Fuchs

## A remark on the extended Hermite—Fejér type interpolation of higher order

Author: D. Berman

Author: A. Naoum