View More View Less
  • 1 Department of Mathematics and Statistics University of Saugar Gour Nagar Sagar M. P. India
Restricted access

In a topological spaceX, a T2-distinct pointx means that for anyyX xy, there exist disjoint open neighbourhoods ofx andy. Similarly, T0-distinct points and T1distinct points are defined. In a Ti-distinct point-setA, we assume that eachxA is a Ti-distinct point (i=0, 1, 2). In the present paper some implications of these notions which ‘localize’ the Ti-separation axioms (i=0, 1, 2) requirement, are studied. Suitable variants of regularity and normality in terms of T2-distinct points are shown hold in a paracompact space (without the assumption of any separation axioms). Later T0-distinct points are used to give two characterizations of the RD-axiom.1 In the end, some simple results are presented including a condition under which an almost compact set is closed and a result regarding two continuous functions from a topological space into a Hausdorff space is sharpened. A result which relates a limit pointv to an ω-limit point is stated.

Manuscript Submission: HERE

  • Impact Factor (2019): 0.693
  • Scimago Journal Rank (2019): 0.412
  • SJR Hirsch-Index (2019): 20
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.664
  • Scimago Journal Rank (2018): 0.412
  • SJR Hirsch-Index (2018): 19
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

Periodica Mathematica Hungarica
Language English
Size B5
Year of
per Year
per Year
Founder Bolyai János Matematikai Társulat - János Bolyai Mathematical Society
H-1055 Budapest, Hungary Falk Miksa u. 12.I/4.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 0031-5303 (Print)
ISSN 1588-2829 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0
Sep 2021 1 0 0
Oct 2021 0 0 0
Nov 2021 0 0 0
Dec 2021 0 0 0