View More View Less
  • 1 College of Chemical and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051 Jiangsu People's Republic of China
  • | 2 State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, 030001 Shanxi People's Republic of China
Restricted access

Abstract

The dehydrogenation of isobutane to produce isobutene coupled with reverse water gas shift (RWGS) reaction in the presence of carbon dioxide was investigated over a NiO/γ-Al2O3 catalyst. The results illustrated that the coupling dehydrogenation of isobutane in carbon dioxide over NiO/γ-Al2O3 catalyst is effective, and the NiO/Al2O3 catalyst was modified with deposited carbon by impregnation of alumina with an aqueous solution of Ni(H2NCH2CH2NH2)x (NO3)2. Carbon modification can decrease the total acidity of the NiO/γ-Al2O3 catalyst and enhance the dispersion of NiO active phase. Furthermore, carbon has low acidity and anti-coking performance, so the carbon modification is effective in suppressing the coke formation and side reactions occurrence. Therefore, the catalyst stability and the isobutene selectivity are improved significantly by the carbon modification.

  • 1.

    Al-Zahrani S Elbashir N Abasaeed A Abdulwahed M (2000) Catal Lett 69: 65 .

  • 2.

    Botavina M Martra G Agafonov Y Gaidai N Nekrasov N Trushin D Coluccia S Lapidus A (2008) Appl Catal A 347: 126 .

  • 3.

    Ogonowski J Skrzyńska E (2006) React Kinet Catal Lett 88: 293 .

  • 4.

    Ogonowski J Skrzyńska E (2005) React Kinet Catal Lett 86: 195 .

  • 5.

    Ogonowski J Skrzyńska E (2008) Catal Lett 124: 52 .

  • 6.

    Ogonowski J Skrzyńska E (2006) Catal Lett 111: 79 .

  • 7.

    Ding JF Qin ZF Li XK Wang GF Wang JG (2008) Chin Chem Lett 19: 1059 .

  • 8.

    Shimada H Akazawa T Ikenaga N Suzuki T (1998) Appl Catal A 243: 168.

  • 9.

    Ding JF Qin ZF Li XK Wang GF Wang JG (2010) J Mol Catal A 315: 221 .

  • 10.

    Bhasin M McCain J Vora B Imai T Pujadó P (2001) Appl Catal A 221: 397 .

  • 11.

    Sahoo S Rao P Rajeshwer D Krishnamurthy K Singh I (2003) Appl Catal A 244: 311 .

  • 12.

    Wu Z Stair P (2006) J Catal 237: 220 .

  • 13.

    Sánchez-Galofré O Segura Y Pérez-Ramírez J (2007) J Catal 249: 123 .

  • 14.

    Bariås O Holmen A Blekkan E (1996) J Catal 158: 1 .

  • 15.

    Butterworth S Scaroni A (1985) Appl Catal 16: 375 .

  • 16.

    Vissers J Mercx F Bouwens S Beer V Prins R (1988) J Catal 114: 291 .

  • 17.

    Sharanda L Plyuto Y Babich I Babich Y Moulijn J (1999) Mendeleev Commun 3: 95 .

  • 18.

    Plyuto I Shpak A Stoch J Sharanda L Plyuto Y Babich I Makkee M Moulijn J (2006) Surf Interface Anal 38: 917 .

  • 19.

    He S Sun C Du H Dai X Wang B (2008) J Chem Eng 141: 284 .

  • 20.

    Duprez D (1983) J Chim Phys 80: 487.

  • 21.

    Baylet A Royer S Marécot P Tatibouët JM Duprez D (2008) Appl Catal B 81: 88 .

  • 22.

    Maurice V Ryndin YuA Bergeret G Savary L Candy JP Basset JM (2001) J Catal 204: 192 .

  • 23.

    Martin GA de Montgolfier P Imelik B (1973) Surf Sci 36: 675 .

  • 24.

    Stockmeyer R Conrad HM Renouprez A Fouilloux P (1975) Surf Sci 49: 549 .

  • 25.

    Rynkowski J Paryjczak T Lenik M (1993) Appl Catal A 106: 73 .

  • 26.

    Kirumakki S Shpeizer B Sagar G Chary K Clearfield A (2006) J Catal 242: 319 .