Authors:
Shi XuCollege of Chemistry and Environmental Science, Lanzhou City University, 730070 Lanzhou, People's Republic of China

Search for other papers by Shi Xu in
Current site
Google Scholar
PubMed
Close
,
Sheng LiCollege of Chemistry and Environmental Science, Lanzhou City University, 730070 Lanzhou, People's Republic of China

Search for other papers by Sheng Li in
Current site
Google Scholar
PubMed
Close
,
Yun WeiCollege of Chemistry and Environmental Science, Lanzhou City University, 730070 Lanzhou, People's Republic of China

Search for other papers by Yun Wei in
Current site
Google Scholar
PubMed
Close
,
Li ZhangCollege of Chemistry and Environmental Science, Lanzhou City University, 730070 Lanzhou, People's Republic of China

Search for other papers by Li Zhang in
Current site
Google Scholar
PubMed
Close
, and
Fei XuCollege of Chemistry and Environmental Science, Lanzhou City University, 730070 Lanzhou, People's Republic of China

Search for other papers by Fei Xu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Titanium dioxide (TiO2), polythiophene and polythiophene/TiO2 were prepared by sol–gel and solid-state reaction methods. Water-free iron(III) chloride (FeCl3) was used as an oxidant. The phase composition, morphology and the spectral properties of the products were characterized by XRD, TEM, UV–Vis and FT-IR techniques. The photocatalytic activity of the products was evaluated by the degradation of methyl orange under sunlight irradiation. TEM results showed that the polythiophene/TiO2 composite particles were well dispersed, rod-like shaped with 20 × 80 nm dimensions. UV–Vis analysis indicated that the absorption edge of polythiophene/TiO2 was 605 nm. Compared with the unmodified TiO2 and bare polythiophene, polythiophene/TiO2 exhibited largely enhanced activity for the photocatalytic degradation of methyl orange under sunlight irradiation. A degradation efficiency of methyl orange of 85.6% could be obtained within 120 min. The sensitization mechanism of polythiophene for the TiO2 photocatalyst is discussed briefly.

  • 1.

    Marina MP Salvador C Maximiliano A Ricardo G (2002) Al2O3-TiO2 sol-gel mixed oxides as suitable supports for the reduction of NO by CO. React Kinet Catal Lett 76: 7581 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Yu JG (2004) TiO2 thin film photocatalyst. Rare Met 23: 289295.

  • 3.

    Mohamed RM (2009) Characterization and catalytic properties of nano-sized Pt metal catalyst on TiO2-SiO2 synthesized by photo-assisted deposition and impregnation methods. J Mater Process Technol 209: 577583 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Gu DE Yang BC Hu YD (2007) A novel method for preparing V-doped titanium dioxide thin film photocatalysts with high photocatalytic activity under visible light irradiation. Catal Lett 118: 254259 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Yan XL He J Evans DG Duan X Zhu YX (2005) Preparation, characterization and photocatalytic activity of Si-doped and rare earth-doped TiO2 from mesoporous precursors. Appl Catal B: Environ 55: 243252 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Rupali G Amitabha D (2000) Conducting polymer nanocomposites: a brief overview. Chem Mater 12: 608622 .

  • 7.

    Armes SP Gottesfeld S Beery JG Garzon F Agnew SF (1991) Conducting polymer-colloidal silica composites. Polymer 32: 23252330 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Gill M Armes SP Fairhurst D Emmett S Piggot T Idzorek G (1992) Particle size distributions of polyaniline-silica colloidal composites. Langmuir 8: 21782182 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Gao JZ Li SY Yang W Ni G Bo LL (2007) Synthesis of PANI/TiO2-Fe3+ nanocomposite and its photocatalytic property. J Mater Sci 42: 31903196 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Chen AH Wang HQ Zhao B Li XY (2003) The preparation of polypyrrole-Fe3O4 nanocomposites by the use of common ion effect. Synth Met 139: 411415 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Karatchevtseva I Zhang Z Hanna J Luca V (2006) Electrosynthesis of macroporous polyaniline-V2O5 nanocomposites and their unusual magnetic properties. Chem Mater 18: 49084916 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Ryu SS Yoon DH (2007) Solid-state synthesis of nano-sized BaTiO3 powder with high tetragonality. J Mater Sci 42: 70937099 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Yuan AQ Wu J Huang ZY Wu K Liao S Tong ZF (2008) Synthesis of NH4FePO4·H2O nano-plates via solid-state reaction at low temperature and its thermochemistry properties. Mater Res Bull 43: 13391345 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Abdiryim T Zhang XG (2003) Solid-state synthesis of camphor sulfonic acid doped polyaniline. Chin J Appl Chem 20: 10991101.

  • 15.

    Chen JM Zou YP Li YF Zhou XW Zhang JB Li XP Xiao XR Lin Y (2008) Improving the photoelectrochemical performance of polythiophene sensitized TiO2 electrode by modification with gold nanoparticles. Chem Phys Lett 460: 168172 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Yan QZ Su XT Zhou YP Ge CC (2005) Influence of cerium ions on the anatase-rutile phase transition of TiO2 prepared by sol-gel auto-igniting synthesis. Rare Met 24: 125130.

    • Search Google Scholar
    • Export Citation
  • 17.

    Sclafani A Merrmann JM (1996) Comparison of the photoelectronic and photocatalytic activities of various anantase and rutile forms of titania in pure liquid organic phase and in aqueous solution. J Phys Chem 100: 1365513661 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Langford JA Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11: 102113 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Klong HP Alexander LE (1954) X-ray diffraction procedures for crystalline and amorphous solids. Wiley, New York.

  • 20.

    Karim MR Lee CJ Lee MS (2006) Synthesis and characterization of conducting polythiophene/carbon nanotubes composites. J Polym Sci A Polym Chem 44: 52835290 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Gong J Cui XJ Xie ZW Wang SG Qu LY (2002) The solid-state synthesis of polyaniline/H4SiW12O40 materials. Synth Met 129: 187192 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Fujishima A Rao TN Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev 1: 121 .

  • 23.

    Wang WJ Gu MY Jin YP (2003) Effect of PVP on the photocatalytic behavior of TiO2 under sunlight. Mater Lett 57: 32763281 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Kong FH Wang Y Zhang J Xia HJ Zhu BL Wang YM Wang SR Wu SH (2008) The preparation and gas sensitivity study of polythiophene/SnO2 composites. Mater Sci Eng B 150: 611 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Měšt’ánková H Mailhot G Jirkovský J Krýsa J Bolte M (2005) Mechanistic approach of the combined (iron-TiO2) photocatalytic system for the degradation of pollutants in aqueous solution: an attempt of rationalization. Appl Catal B Environ 57: 257265 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Hou JH Huo LJ He C Yang CH Li YF (2006) Synthesis and absorption spectra of poly(3-(phenylenevinyl)thiophene)s with conjugated side chains. Macromolecules 39: 594603 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Park DR Zhang JL Ikeue K Yamashita H Anpo M (1999) Photocatalytic oxidation of ethylene to CO2 and H2O on ultrafine powdered TiO2 photocatalysts in the presence of O2 and H2O. J Catal 185: 114119 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
  • Top

To see the editorial board, please visit the website of Springer Nature.

Manuscript submission: www.editorialmanager.com/reac

For subscription options, please visit the website of Springer Nature.

Reaction Kinetics, Mechanisms and Catalysis
Language English
Size B5
Year of
Foundation
1974
Volumes
per Year
1
Issues
per Year
6
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1878-5190 (Print)
ISSN 1878-5204 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2022 6 0 0
May 2022 4 0 0
Jun 2022 3 0 0
Jul 2022 2 0 0
Aug 2022 5 0 0
Sep 2022 3 0 0
Oct 2022 0 0 0