View More View Less
  • 1 Department of Chemistry, Faculty of Science, University of Lorestan, 68137-17133 Khoramabad, Iran
Restricted access

Abstract

The rate constant of alkaline fading of brilliant green (BG+) was measured in the presence of non ionic (TX-100), cationic (DTAB) and anionic (SDS) surfactants. This reaction was studied under pseudo first-order conditions at 283–303 K. The rate of reaction showed remarkable dependence on the electrical charge of the used surfactants. It was observed that the reaction rate constant increases in the presence of TX-100 and DTAB (catalytic effect) and decreases in the presence of SDS (inhibitory effect). Binding constants and the related thermodynamic parameters were obtained by the classical model. The results show that binding of BG+ to TX-100 is exothermic and binding of BG+ to DTAB and SDS is endothermic in the used concentration range of surfactants.

  • 1.

    Fendler JH Fendler EJ Chang SA (1973) J Am Chem Soc 95: 3273 .

  • 2.

    Munoz M Rodriguez A Del Mar Graciani M Moya ML (2002) Int J Chem Kinet 34: 445 .

  • 3.

    De TK Maitra A (1995) Adv Colloid Interface Sci 59: 95 .

  • 4.

    Tang SS Chang GG (1995) J Org Chem 60: 6183 .

  • 5.

    Liou JY Huang TM Chang GG (1999) J Chem Soc Perkin Trans 2: 2171.

  • 6.

    Kambo N Upadhyay SK (2009) Int J Chem Kinet 41: 123 .

  • 7.

    Ghosh KK Verma SK (2009) Int J Chem Kinet 41: 377 .

  • 8.

    Saha B Sarkar S Chowdhury KM (2008) Int J Chem Kinet 40: 282 .

  • 9.

    Bravo-Diaz C Pastoriza-Gallego MJ Lasada-Barreiro S Sanchez-Paz V Fernandez-Alonso A (2008) Int J Chem Kinet 40: 301 .

  • 10.

    Gregory P (1993) Dye and dye intermediates. In: Kroschwitz JI (ed) Encyclopedia of chemical technology, vol 8. Wiley, Indiana, USA, p 544.

    • Search Google Scholar
    • Export Citation
  • 11.

    Duxbury DF (1993) Chem Rev 93: 381 .

  • 12.

    Kingsland GV Anderson J (1976) Poult Sci 55: 852.

  • 13.

    Balabanova MB Popova L Tchipeva R (2003) Clin Dermatol 21: 2.

  • 14.

    Alderman DJ (1982) J Fish Dis 5: 113 .

  • 15.

    Samiey B Alizadeh K Moghaddasi MA Mousavi MF Alizadeh N (2004) Bull Korean Chem Soc 25: 726 .

  • 16.

    Samiey B Raoof Toosi A (2009) Bull Korean Chem Soc 30: 2051 .

  • 17.

    Huang Z Gu T (1987) Colloids Surf 28: 159 .

  • 18.

    Parida SK Mishra BK (1998) Colloids Surf A 134: 249 .

  • 19.

    Caetano W Tabak M (2000) J Colloid Interface Sci 225: 69 .

  • 20.

    Welti R Mulikin LJ Yoshimura T Helmkamp JM (1984) Biochemistry 23: 6086 .

  • 21.

    Samiey B Alizadeh K Mousavi MF Alizadeh N (2005) Bull Korean Chem Soc 26: 384 .

  • 22.

    Hughes ED (1941) Trans Faraday Soc 37: 603 .

  • 23.

    Ingold CK (1993) Structure and mechanism in organic chemistry. Bell, London.

  • 24.

    Chotipong A Scamehorn JF Rirksomboon T Chavadej S Supaphol P (2007) Colloids Surf A 297: 163 .

  • 25.

    Olanrewaju O Ige J Soriyan O Grace O Segun Esan O Olanrewaju O (2007) Acta Chim Slov 54: 370.

  • 26.

    Rabiller-Baudry M Paugam L Bégion L Delaunay D Fernandez-Cruz M Phina-Ziebin C Laviades-Garcia de Guadiana C Chaufer B (2006) Desalination 191: 334 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Chakraborty T Chakraborty I Ghosh S (2006) Langmuir 22: 9905 .

  • 28.

    Mandeep MS Shweta S Singh K Shaheen A (2005) J Colloid Interface Sci 286: 369 .

  • 29.

    Soboleva OA Badun GA Summ BD (2006) Colloid J 68: 255 .

  • 30.

    Carnero Ruiz C Aguiar J (2000) Langmuir 16: 7946 .

  • 31.

    Piszkiewicz DJ (1976) J Am Chem Soc 98: 3053 .

  • 32.

    Piszkiewicz DJ (1976) J Am Chem Soc 99: 7695 .

  • 33.

    Piszkiewicz DJ (1976) J Am Chem Soc 99: 1550 .