View More View Less
  • 1 Boreskov Institute of Catalysis, 5 Pr. Lavrentieva, Novosibirsk, 630090 Russia
  • | 2 Novosibirsk State University, 2, Pirogova str, Novosibirsk, 630090 Russia
Restricted access

Abstract

The anionic composition, structural parameters, optical properties and reduction behavior of Cu–MgO solid solution in hydrogen dramatically change after exposure to air. The air-exposed Cu–Mg oxide contains a lot of CO32− and OH anions. Its reduction proceeds via two stages: (1) diffusion of Cu2+ to the surface and (2) chemical interaction of Cu2+ with hydrogen. The effective activation energy gradually increases from that of the chemical step (65 kJ/mol) to that of the transport step of Cu2+ diffusion (130 kJ/mol). This behavior follows the “compensation effect”, which is close to those reported earlier for CuO reduction. On the contrary, reduction of Cu2+ from the Cu–Mg oxide sample, which was not exposed to air after thermal pretreatment in the inert gas, proceeds in one step at 120–160 °C with the effective activation energy of 19 kJ/mol, which is manifold less than the reported effective activation energies for various Cu-oxide systems. Water molecules eliminate from the sample slowly along with further heating up to 450 °C.

  • 1.

    Lee EK Jung KD Joo OS Shul YG (2005) React Kinet Catal Lett 87 (1): 115120 .

  • 2.

    Xu S Huang C Zhang J Chen B (2009) Korean J Chem Eng 26 (6): 15681573 .

  • 3.

    Yahiro H Mirawaki K Saiki K Yamamoto T Yamaura H (2007) Catal Today 126 (3-4): 436440 .

  • 4.

    Pozan GS Boz I (2006) Ind J Chem Technol 13 (5): 488492.

  • 5.

    Pozan GS Boz I Gurkaynak MA (2004) React Kinet Catal Lett 83 (1): 137146 .

  • 6.

    Nagaraja BM Padmasri AH Raju BD Rao KSR (2007) J Mol Catal A Chem 265 (1-2): 9097 .

  • 7.

    Nagaraja BM Padmasri AH Seetharamulu P Reddy KHP Raju BD Rao KSR (2007) J Mol Catal A Chem 278 (1-2): 2937 .

  • 8.

    Yang RQ Zhang Y Iwama Y Tsubaki N (2005) Appl Catal A Gen 288 (1-2): 126133 .

  • 9.

    Hu BS Fujimoto K (2008) Appl Catal A Gen 346 (1-2): 174178 .

  • 10.

    Litvak GS Minyukova TP Demeshkina MP Plyasova LM Yurieva TM (1986) React Kinet Catal Lett 31 (2): 403408 .

  • 11.

    Ketchik SV Plyasova LM Chigrina VA Minyukova TP Yurieva TM (1980) React Kinet Catal Lett 14 (2): 135140 .

  • 12.

    Pascual JL Savoini B Gonzalez R (2004) Electronic absorption spectra of Cu2+ in MgO: ab initio theory and experiment. Phys Rev B 70: 045109 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Stankic S Mueller M Diwald O Sterrer M Knoezinger E Bernardi J (2005) Angew Chem Int Ed 44: 49174920 .

  • 14.

    Lever ABP (1968) Inorganic electronic spectroscopy. Elsevier, Amsterdam.

  • 15.

    Ismagilov ZR Yashnik SA Anufrienko VF Larina TV Vasenin NT Bulgakov NN Vosel SV Tsykoza LT (2004) Appl Surf Sci 226: 88 .

  • 16.

    Maksimov NG Anufrienko VF Ione KG Shestakova NA (1973) J Struct Chem 13 (6): 953957 .

  • 17.

    Boudart M Derouane EG Indovina V Walters AB (1975) J Catal 39: 115124 .

  • 18.

    Wu MC Truong CM Goodman DW (1992) Phys Rev B 46: 1268812694 .

  • 19.

    Avdeev VI Zhidomirov GM (2003) J Struct Chem 44 (6): 918926 .

  • 20.

    Kim JY Rodriguez JA Hanson JC Frenkel AI Lee PL (2003) J Am Chem Soc 125 (35): 1068410692 .

  • 21.

    Vyazovkin SV (2006) J Therm Anal Calorim 83: 4551 .

  • 22.

    Frank-Kamenetskii DA (1969) Diffusion and heat transfer in chemical kinetics, 2nd edn. Plenum Press, New York.

  • 23.

    Rebane JA Yakovlev NV Chicherin DS Tretyakov YD Leonyuk LI Yakunin VG (1997) J Mater Chem 7 (10): 20852089 .

  • 24.

    Andreini A Poels E Bliek A (1998) React Kinet Catal Lett 63 (2): 209217 .