View More View Less
  • 1 College of Chemistry, Jilin University, Changchun, 130021 People’s Republic of China
  • | 2 The Science of Analysis Test and Experiment Center, Jilin University, Changchun, 130021 People’s Republic of China
Restricted access

Abstract  

The reaction of direct transformation of ethanol to ethyl acetate was investigated on reduced Cu/ZrO2 catalysts prepared by a co-precipitation procedure. The catalytic performances of these Cu–Zr mixed oxides were considerably influenced by changing the molar ratio of Cu to Zr. The highest selectivity to ethyl acetate was found over Cu/ZrO2(1) catalyst (molar ratio of Cu to Zr was 1). A variety of characterization techniques, such as N2 adsorption, XRD, XPS, TPR and NH3-TPD were carried out on the catalysts. The results revealed that the presence of a certain amount of Cu+ species may play very important role in improving the selectivity to ethyl acetate of the Cu/ZrO2 catalysts.

Manuscript submission: www.editorialmanager.com/reac

  • Impact Factor (2019): 1.520
  • Scimago Journal Rank (2019): 0.345
  • SJR Hirsch-Index (2019): 39
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • SJR Quartile Score (2019): Q4 Catalysis
  • Impact Factor (2018): 1.142
  • Scimago Journal Rank (2018): 0.374
  • SJR Hirsch-Index (2018): 37
  • SJR Quartile Score (2018): Q3 Physical and Theoretical Chemistry
  • SJR Quartile Score (2018): Q3 Catalysis

For subscription options, please visit the website of Springer

Reaction Kinetics, Mechanisms and Catalysis
Language English
Size B5
Year of
Foundation
1974
Volumes
per Year
3
Issues
per Year
6
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1878-5190 (Print)
ISSN 1878-5204 (Online)