Gas phase toluene hydrogenation is investigated over Pt/Al2O3 catalyst with temperature ranging from 75 to 125 °C and at atmospheric pressure. Strong activity variations are observed during long duration experiments. These variations are thoroughly investigated and a mechanistic model is proposed with dynamic adsorption activity of the reactants, used to explain the decrease in catalyst activity. This model considers competitive adsorption behaviour of the reactants and dissociative adsorption of hydrogen. Such a model can also be used to explain the strong metal-support interaction (SMSI) effect induced by the catalyst support. The decrease in activity after temperature maxima as previously observed can also be addressed by the approach presented. A comparison of activity variation at different residence times i.e. 20–50 kgcat·s·mol−1 and different hydrogen and toluene partial pressures is also simulated.
1. Wang, J, Wan, W 2009 Int J Hydrogen Energy. 34:235–244 .
2. Das, D, Veziroglu, TN 2001 Int J Chem Reactor Eng. 26:13–28.
3. Saeys, M, Reyniers, MF, Thybaut, JW, Neurock, M, Marin, GB 2005 J Catal. 236:129–138 .
4. Keane, MA, Patterson, PM 1996 J Chem Soc Faraday Trans. 92:1413–1421 .
5. Orozco, JM, Webb, G 1983 Appl Catal. 6:67–84 .
6. Rousset, JL., Stievano, L, Cadete Santos Aires, FJ, Geantet, C, Renouprez, AJ, Pellarin, M 2001 J Catal. 197:335–343 .
7. Kaufmann, TG, Kaldor, A, Stuntz, GF, Kerby, MC, Ansell, LL 2000 Catal Today. 62:77–90 .
8. Klvana, D, Chaouki, J, Kusohorsky, D, Chavarie, C 1988 Appl Catal. 42:121–130 .
9. Gaidai, NA, Kazantsev, RV, Nekrasov, NV, Shulga, YuM, Ivleva, IN 2002 React Kinet Catal Lett. 75:55–61 .
10. Kazantsev, RV, Gaidai, NA, Nekrasov, NV, Tenchev, K, Petrov, L, Lapidus, AL 2003 Kinet Catal. 44:529–535 .
11. Lin, SD, Vannice, MA 1993 J Catal. 143:563–572 .
12. Lindfors, LP, Salmi, T, Smeds, S 1993 Chem Eng Sci. 48:3813–3828 .
13. Thybaut, JW, Saeys, M, Marin, GB 2002 Chem Eng J. 90:117–129 .
14. Lin, SD, Vannice, MA 1993 J Catal. 143:554–562 .
15. Rahaman, MV, Vannice, MA 1991 J Catal. 127:267–275 .
16. Rahaman, MV, Vannice, MA 1991 J Catal. 127:251–266 .
17. Wang, J, Huang, L, Li, Q 1998 Appl Catal A Gen. 175:191–199 .
18. Levenspiel, O 1999 Chemical reaction engineering 3 Wiley New York.
19. Masloboishchikova, OV, Khelkovskaya-Sergeeva, EG, Bogdan, VI, Vasina, TV, Kustov, LM 2006 Russ J Phys Chem. 80:646–652 .
20. Castaño, P, Arandes, JM, Pawelec, B, Luis, J, Fierro, G, Gutierrez, A, Bilbao, J 2007 Ind Eng Chem Res. 46:7417–7425 .
21. Chupin, J, Gnep, N, Lacombe, S, Guisnet, M 2001 Appl Catal A Gen. 206:43–56 .
22. Bartholomew, CH 2001 Appl Catal A Gen. 212:17–60 .
23. Hallenbeck, PC, Ghosh, D 2009 Trends Biotechnol. 27:5 .
24. Lindfors, LP, Salmi, T 1993 Ind Eng Chem Res. 32:34–42 .
25. Mamède, AS, Giraudon, JM, Löfberg, A, Leclercq, L, Leclercq, G 2002 Appl Catal A Gen. 227:73–82 .
26. Gaidai NA , Gudkov BS, Aliev KhKh, Kiperman SL (1992) Kinet Katal 33:370–374.
27. Keane, MA, Patterson, PM 1999 Ind Eng Chem Res. 38:1295–1305 .
28. Bond, GC 2005 Metal-catalysed reactions of hydrocarbons Springer New York.
29. Briens C , Piskorz J, Berruti F (2008) Int J Chem Reactor Eng 6: 1-49.
30. Wang, J, Wan, W 2009 Int J Hydrogen Energy. 34:3313–3323 .
31. Ali, AGA, Ali, LI, Aboul-Fotouh, SM, Aboul-Gheit, AK 1998 Appl Catal A Gen. 170:285–296 .
32. Slioor, RI, Kanervo, JM, Keskitalo, TJ, Krause, AOI 2008 Appl Catal A Gen. 344:183–190 .
33. Slioor, RI, Kanervo, RI, Krause, AOI 2008 Catal Lett. 121:24–32 .
34. El-Hajj, A, Karaki, S, Al-Husseini, M, Kabalan, KY 2004 Spreadsheets Educ. 1:217–229.