Authors:
Lin Song Department of Environmental Engineering, Jinan University, West of Huangpu Road 601, Guangzhou 510632, People's Republic of China
Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation, Department of Education of Guangdong Province, West of Huangpu Road 601, Guangzhou 510632, People's Republic of China

Search for other papers by Lin Song in
Current site
Google Scholar
PubMed
Close
,
Xin Zhang Department of Environmental Engineering, Jinan University, West of Huangpu Road 601, Guangzhou 510632, People's Republic of China
Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation, Department of Education of Guangdong Province, West of Huangpu Road 601, Guangzhou 510632, People's Republic of China

Search for other papers by Xin Zhang in
Current site
Google Scholar
PubMed
Close
, and
Xiaolong Zeng Department of Environmental Engineering, Jinan University, West of Huangpu Road 601, Guangzhou 510632, People's Republic of China
Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation, Department of Education of Guangdong Province, West of Huangpu Road 601, Guangzhou 510632, People's Republic of China

Search for other papers by Xiaolong Zeng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Polymer-modified TiO2 was found to be a new, efficient photocatalyst for the photodegradation of organic pollutants. Another novel sensitizer-poly(fluorene-co-bithiophene) (PFB) was presented in this study. Varying the bithiophene content of PFB from 10, 20, 33, 40 to 50% in molar ratio, a series of copolymers (PFB10, PFB20, PFB33, PFB40 and PFB50) were prepared and used as the sensitizers for TiO2. The photodegradation rates of phenol catalyzed by these polymer-modified titanium dioxide composites under the irradiation of the GaN LED clusters were investigated. It was found that PFB33-modified TiO2 was the most efficient photocatalyst although the absorption spectrum of PFB50 was broader than that of PFB33.

  • 1.

    Fujishima, A, Honda, K. 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature. 238:3738 .

  • 2.

    Frank, SN, Bard, AJ. 1977. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J Phys Chem. 81:14841488 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Gaya, UI, Abdullah, AH. 2008. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C. 9:112 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Wang, J, Xie, YP, Zhang, ZH, Li, J, Li, CW, Zhang, LQ, Xing, ZQ, Xu, R, Zhang, XD. 2010. Photocatalytic degradation of organic dyes by Er3+:YAlO3/TiO2 composite under solar light. Environ Chem Lett. 8:8793 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Mestankova, H, Mailhot, G, Jirkovsky, J, Krysa, J, Bolte, M. 2009. Effect of iron speciation on the photodegradation of monuron in combined photocatalytic systems with immobilized or suspended TiO2. Environ Chem Lett. 7:127132 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Merabet, S, Robert, D, Weber, JV, Bouhelassa, M, Benkhanouche, S. 2009. Photocatalytic degradation of indole in UV/TiO2: optimization and modelling using the response surface methodology (RSM). Environ Chem Lett. 7:4549 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Sakkas, VA, Dimou, A, Pitarakis, K, Mantis, G, Albanis, T. 2005. TiO2 photocatalyzed degradation of diazinon in an aqueous medium. Environ Chem Lett. 3:5761 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    O'Regan, B, Gratzel, M. 1991. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 353:737740 .

  • 9.

    Bach, U, Lupo, D, Comte, P, Moser, JE, Weissortel, F, Salbeck, J, Spreitzer, H, Gratzel, M. 1998. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature. 395:583585 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Shang, J, Chai, M, Zhu, YF. 2003. Photocatalytic degradation of polystyrene plastic under fluorescent light. Environ Sci Technol. 37:44944499 .

  • 11.

    Chatterjee, D, Mahata, A. 2002. Visible light induced photodegradation of organic pollutants on dye adsorbed TiO2 surface. J Photochem Photobiol A. 153:199204 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Wu, TX, Liu, GM, Zhao, JC, Hidaka, H, Serpone, N. 1998. Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J Phys Chem B. 102:58455851 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Moser, J, Gratzel, M. 1984. Photosensitized electron injection in colloidal semiconductors. J Am Chem Soc. 106:65576564 .

  • 14.

    Cheung, STC, Fung, AKM, Lam, MHW. 1998. Visible photosensitization of TiO2-photodegradation of CCl4 in aqueous medium. Chemosphere. 36:24612473 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Ikeda, A, Abe, C, Torimoto, T, Ohtani, B. 2003. Photochemical hydrogen evolution from aqueous triethanolamine solutions sensitized by binaphthol-modified titanium (IV) oxide under visible-light irradiation. J Photochem Photobiol A. 160:6167 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Song, L, Qiu, RL, Mo, YQ, Zhang, DD, Wei, H, Xiong, Y. 2007. Photodegradation of phenol in a polymer-modified TiO2 semiconductor particulate system under the irradiation of visible light. Catal Commun. 8:429433 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Rehman, S, Ullah, R, Butt, AM, Gohar, ND. 2009. Strategies of making TiO2 and ZnO visible light active. J Hazard Mater. 170:560569 .

  • 18.

    Wang, DS, Wang, YH, Li, XY, Luo, QZ, An, J, Yue, HX. 2008. Sunlight photocatalytic activity of polypyrrole–TiO2 nanocomposites prepared by ‘in situ’ method. Catal Commun. 9:11621166 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Zhu, YF, Xu, SB, Jiang, L, Pan, KL, Dan, Y. 2008. Synthesis and characterization of polythiophene/titanium dioxide composites. React Funct Polym. 68:14921498 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Li, XY, Wang, DS, Cheng, GX, Luo, QZ, An, J, Wang, YH. 2008. Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination. Appl Catal B. 81:267273 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Salem, MA, Al-Ghonemiy, AF, Zaki, AB. 2009. Photocatalytic degradation of allura red and quinoline yellow with Polyaniline/TiO2 nanocomposite. Appl Catal B. 91:5966 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Wang, YZ, Zhong, MQ, Chen, F, Yang, JT. 2009. Visible light photocatalytic activity of TiO2/D-PVA for MO degradation. Appl Catal B. 90:249254 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Gather, MC, Bradley, DDC. 2007. An improved optical method for determining the order parameter in thin oriented molecular films and demonstration of a highly axial dipole moment for the lowest energy π–π∗ optical transition in poly(9,9-dioctylfluorene-co-bithiophene). Adv Funct Mater. 17:479485 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Zyung, T, Kim, JJ. 1995. Photodegradation of poly(p-phenylenevinylene) by laser light at the peak wavelength of electroluminescence. Appl Phys Lett. 67:34203422 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript submission: www.editorialmanager.com/reac

For subscription options, please visit the website of Springer Nature.

Reaction Kinetics, Mechanisms and Catalysis
Language English
Size B5
Year of
Foundation
1974
Volumes
per Year
1
Issues
per Year
6
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1878-5190 (Print)
ISSN 1878-5204 (Online)