Sulfated molecular sieves were synthesized and characterized by XRD, FTIR, chemical analyses, acidity measurements and N2 adsorption–desorption isotherms. Sulfatation led to structural changes in the solid framework by increasing the acidity and accessibility of the acid sites. Br⊘nsted and Lewis acid sites of mild to high strength improved the conversion of alcohols, but the selectivity was modest over sulfated FAU type Y, ZSM-5 and γ-Al2O3 solids at temperatures lower than 200 °C. The characteristics of the sulfated AlSBA-15 molecular sieve in terms of acidity, textural properties and accessibility possibly make this solid useful for catalytic reactions involving bulky organic compounds.
1. Bouchet, F, Fujisawa, H, Kato, M, Yamaguchi, T 1994 J Weitkamp HG Karge H Pfeifer W Hölderich eds. Studies in surface science and catalysis 84 Elsevier Amsterdam.
2. Corma, A 1995 Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev. 95:559–614 .
3. Patel, A, Coudurier, C, Essayem, N, Védrine, JC 1997 Effect of the addition of Sn to zirconia on the acidic properties of the sulfated mixed oxide. J Chem Soc Faraday Trans. 93:347–353 .
4. Oliveira, AC, Essayem, N, Tuel, A, Clacens, J-M, Taârit, YB 2006 Acid and superacid solids for the transformation of n-butane. React Kinet Catal Lett. 89:123–129 .
5. Oliveira, AC, Essayem, N, Tuel, A, Clacens, J-M, Taârit, YB 2008 Comparative study of transformation of linear alkanes over modified mordenites and sulphated zirconia catalysts: Influence of the zeolite acidity on the performance of n-butane isomerization. J Mol Catal A Chem. 239:31–38 .
6. Oliveira, AC, Essayem, N, Tuel, A, Clacens, J-M, Taârit, YB 2008 Acidic, physico–chemical and catalytic properties of MCM-41 containing transitions metals. Stud Surf Sci Catal. 174:1239–1242 .
7. Chai, S-H, Wang, HP, Liang, Y, Xu, B-Q 2009 Sustainable production of acrolein: preparation and characterization of zirconia-supported 12-tungstophosphoric acid catalyst for gas-phase dehydration of glycerol. Appl Catal A Gen. 353:213–222 .
8. Molochnikov, LS, Kovaleva, EG, Golovkina, EL, Kirilyuk, IA, Grigor’ev, IA 2007 Spin probe study of acidity of inorganic materials. Colloid J. 69:769–776 .
9. Ichiura, H, Okamura, N, Kitaoka, T, Tanaka, H 2001 Preparation of zeolite sheet using a papermaking technique Part II The strength of zeolite sheet and its hygroscopic characteristics. J Mater Sci. 36:4921–4926 .
10. Chai, S-H, Wang, H-P, Liang, Y, Xu, B-Q 2008 Sustainable production of acrolein: gas-phase dehydration of glycerol over 12-tungstophosphoric acid supported on ZrO2 and SiO2. Green Chem. 10:1087–1093 .
11. Kim, ND, Oh, S, Joo, BJ, Jung, KS, Yi, J 2010 Effect of preparation method on structure and catalytic activity of Cr-promoted Cu catalyst in glycerol hydrogenolysis Kor. J Chem Eng. 27:431–434.
12. Suprun, W, Lutecki, M, Haber, T, Paap, H 2009 J Mol Catal A Chem. 309:71 .
13. Zhou, C-H, Beltramini, JN, Fan, YX, Lu, CQ 2008 Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev. 37:527–549 .
14. Yu, W, Zhao, J, Ma, H, Miao, H, Song, A, Xu, J 2010 Aqueous hydrogenolysis of glycerol over Ni–Ce/AC catalyst: promoting effect of Ce on catalytic performance. Appl Catal A Gen. 383:73–78 .
15. de Oliveira AS , Vasconcelos SJ, de Sousa JR, de Sousa FF, Filho JM, Oliveira AC (2010) Catalytic conversion of glycerol to acrolein over modified molecular sieves: activity and deactivation studies. Chem Eng J 83: 970-977 doi:.
16. Ning, L, Ding, Y, Chen, W, Gong, L, Lin, R, Yuan, L, Xin, Q 2008 Glycerol dehydration to acrolein over activated carbon-supported silicotungstic acids. Chin J Catal. 29:212–214 .
17. Jia, CJ, Liu, Y, Schmidt, W, Lu, AN, Schüth, F 2010 Small-sized HZSM-5 zeolite as highly active catalyst for gas phase dehydration of glycerol to acrolein. J Catal. 269:71–79 .
18. Katryniok, B, Paul, S, Capron, N, Dumeignil, F 2009 Towards the sustainable production of acrolein by glycerol. ChemSusChem. 2:719–730 .
19. Kinage, AK, Upare, PP, Kasinathan, P, Hwang, YK, Chang, J-S 2010 Selective conversion of glycerol to acetol over sodium-doped metal oxide catalysts. Catal Comm. 11:620–623 .
20. Sato, S, Akiyama, M, Takahashi, R, Hara, T, Inui, K, Yolota, M 2008 Vapor-phase reaction of polyols over copper catalysts. Appl Catal A Gen. 347:186–191 .
21. Mbaraka, IK, Shanks, BH 2006 Acid strength variation due to spatial location of organosulfonic acid groups on mesoporous silica. J Catal. 244:78–85 .
22. Pecharroman, C, Sobrados, I, Iglesia, JE, Gonzalez-Careño, T, Sang, J 1999 Thermal evolution of transitional aluminas followed by NMR and IR spectroscopies. J Phys Chem B. 103:6160–6170 .
23. Bosnar, S, Kosanović, C, Subotić, B, Bosnar, D, Kajcsos, Z, Liszkay, L, Lohonyai, L, Major, P, Molnár, B, Lázár, K 2008 The influence of alkali cations on the structure of zeolite precursor gels investigated by positron lifetime spectroscopy. Stud Surf Sci Catal. 174:793 .
24. Yori, JC, Grau, JM, Benítez, VM, Sepúlveda, J 2005 Hydroisomerization-cracking of n-octane on heteropolyacid H3PW12O40 supported on ZrO2, SiO2 and carbon: effect of Pt incorporation on catalyst performance. Appl Catal A Gen. 286:71–78 .
25. Atia, H, Armbruster, U, Martin, A 2008 Dehydration of glycerol in gas phase using heteropolyacid catalysts as active compounds. J Catal. 258:71–82 .
26. Lercher, JA, Jentys, A 2002 F Schutz KSW Sing J Weitkamp eds. Handbook of porous solids Wiley-VCH Weinheim.
27. Dresselhaus, MS, Dresselhaus, G, Saito, R, Jorio, A 2005 Electron-phonon matrix elements in single-wall carbon nanotubes. Phys Rep. 409:47 .
28. Pinheiro, AL, Pinheiro, AN, Valentini, A, Mendes Filho, J FF de Sousa JR de Sousa Rocha, MGC, Bargiela, P, Oliveira, AC 2009 Analysis of coke deposition and study of the structural features of MAl2O4 catalysts for the dry reforming of methane. Catal Comm. 11:11–14 .
29. Alhanash, A, Kozhevnikova, EF, Kozhevnikov, IV 2010 Gas-phase dehydration of glycerol to acrolein catalysed by caesium heteropoly salt. Appl Catal A Gen. 378:11–18 .
30. Clacens, J-M, Poilloux, Y, Barrault, J 2002 Selective etherification of glycerol to polyglycerols over impregnated basic MCM-41 type mesoporous catalysts. Appl Catal. 227:181–190 .
31. Kim, YT, Jung, K-D, Duck, PE Gas-phase dehydration of glycerol over ZSM-5 catalysts 2010 Microporous Mesoporous Mater. 131:28–36 .
32. Dalai, AK, Sethuraman, R, Sai, PR, Katikaneni, RO 1998 Synthesis and characterization of sulfated Titania solid acid catalysts. Ind Eng Chem Res. 37:3869–3878 .
33. Meher, LC, Gopinath, R, Naik, SN, Dalai, AK 2009 Catalytic hydrogenolysis of glycerol to propylene glycol over mixed oxides derived from a hydrotalcite-type precursor. Ind Chem Eng Res. 48:1080–1846 .