View More View Less
  • 1 Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St. Block 11, 1113, Sofia, Bulgaria
Restricted access

Abstract

The effect of potassium additive on the catalytic activity of nickel–molybdenum alumina-supported systems has been studied by varying the molybdenum content within 5–18 mass% MoO3, reaction temperature from 180 to 400 (500)°C, and steam to gas ratio of 0.3, 0.7, and 1. It has been established that potassium reduces the activity of one-component Mo-containing samples, while, independent of molybdenum loading, nickel promotes activity within the whole temperature range studied and extends the temperature range of catalytic activity by about 70°C to lower reaction temperatures. A symbatic or additive, or antibatic catalytic behavior was observed with NiMo-containing samples depending on the atomic Ni/Mo ratio and temperature range. Potassium, being a third component in tri-component KNiMo-containing samples, enhances the water–gas shift (WGS) activity depending on the atomic K/(Ni + Mo) ratio. The activity approaches the equilibrium conversion degree in the interval of 320–500 °C. A decrease in the specific surface area of calcined and tested samples relative to the bare support shows close values indicating that the overall dispersion of the species is not changed during the catalytic test. Close examination indicated that the sample containing K2O, NiO, and MoO3 of 4.9, 2.5, and 12.7 mass%, respectively, was found to be the most suitable catalyst for water–gas shift reaction with sulfur containing feed since it attains equilibrium conversion even at 300 °C, and at a low steam to gas ratio of 0.3 atm. This catalyst demonstrates a stable and reproducible catalytic activity as inlet gas loading is increased.

  • 1.

    Newsome, DS. 1980. The water-gas shift reaction. Catal Rev Sci Eng. 21:275318 .

  • 2.

    Rhodes, C, Hutchings, GJ, Ward, AM. 1995. Water-gas shift reaction: finding the mechanistic boundary. Catal Today. 23:4358 .

  • 3.

    Lloyd, L, Ridler, DE, Twigg, MV (1996) MV Twigg eds. The water gas shift reaction. Catalyst handbook 2 Mansion Publishing House London 83338.

    • Search Google Scholar
    • Export Citation
  • 4.

    Kochloefl K. (1997) In: Ertl G, Knözinger H, Weitkamp J (eds) Water-gas shift and COS removal. Handbook of heterogeneous catalysis, vol 4. VCH Verlagsgesellschaft mbH, Weinheim, pp 18311843.

    • Search Google Scholar
    • Export Citation
  • 5.

    Ratnasamy, Ch, Wagner, JP. 2009. Water gas shift catalysis. Catal Rev. 51:325440 .

  • 6.

    Ruettinger, W, Ilinich, O, Farrauto, RJJ. 2003. A new generation of water gas shift catalysts for fuel cell applications. Power Sour. 118:6165 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Stiegel, GJ, Ramezan, M. 2006. Hydrogen from coal gasification: An economical pathway to a sustainable energy future. Int J Coal Geol. 65:173190 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Copperthwaite, RG, Gottschalk, FM, Sangiorgio, T. 1990. Cobalt chromium oxide: a novel sulphur tolerant water-gas shift catalyst. Appl Catal. 63:L11L16 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Mellor, J, Coville, N, Sofianos, A, Copperthwaite, R. 1997. Copper catalysts for the water-gas shift reaction: I. Preparation, activity and stability. Appl Catal A Gen. 164:171183 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Park, J-N, Kim, J-H, Lee, H-I. 2000. A study on sulphur-resistant catalysts for water gas shift reaction. III. Modification of Mo/γ-Al2O3 catalyst with iron group metals. Bull Korean Chem Soc. 21:12331238.

    • Search Google Scholar
    • Export Citation
  • 11.

    Narendra, SR, Weller, SW. 1988. Water-gas shift kinetics over sulfided catalyst: Elevated pressure. Proc 9th Int Cong Catal. 4:18271834.

    • Search Google Scholar
    • Export Citation
  • 12.

    Hakkarainen, R, Salmi, T. 1993. Water-gas shift reaction on a cobalt-molybdenum oxide catalyst. Appl Catal A Gen. 99:195215 .

  • 13.

    Lund, CRF. 1996. Effect of adding Co to MoS2/Al2O3 upon the kinetics of the water-gas shift. Ind Eng Chem Res. 35:30673073 .

  • 14.

    Lian, Y, Wang, H, Zheng, Q, Fang, W, Yang, Y. 2009. Effect of Mg/Al atom ratio of support on catalytic performance of Co-Mo/MgO-Al2O3. J Nat Gas Chem. 18:161166 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Lian, Y, Wang, H, Fang, W, Yang, Y. 2010. Water gas shift activity of Co-Mo/MgO-Al2O3 catalysts presulfided with ammonium sulfide. J Nat Gas Chem. 19:6166 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Kettmann, V, Balgavý, P, Sokol, L. 1988. Characterization of a novel K-Co-Mo/Al2O3 water gas shift catalyst. laser raman and infrared studies of oxidic precursors. J Catal. 112:93106 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Wang, H, Lian, Y, Zhang, Q, Li, Q, Fang, W, Yang, Y. 2008. MgO–Al2O3 mixed oxides-supported Co–Mo-based catalysts for high-temperature water–gas shift reaction. Catal Lett. 126:100105 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Mityashina TA , Semenova TA, Tagitsev BG, Gorbatscheva NB (1984) Sulphur resistant catalysts for water gas shift reaction. Sb. Voprosi kinetiki i kataliza, Ivanovo, pp 7882 (in Russian).

    • Search Google Scholar
    • Export Citation
  • 19.

    Xie, X, Yin, H, Dou, B Huo 1991. Characterization of a potassium-promoted cobalt-molybdenum/alumina water-gas shift catalyst. J Appl Catal. 77:187198 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Nagai, M, Zahidul, AM, Kunisaki, Y, Aoki, Y. 2010. Water–gas shift reactions on potassium- and zirconium-promoted cobaltmolybdenum carbide catalysts. Appl Catal A Gen. 383:5865 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Łaniecki, M, Malecka-Grycz, M, Domka, F. 2000. Water-gas shift reaction over sulfided molybdenum catalysts. I. Alumina, titania and zirconia-supported catalysts. Appl Catal A Gen. 196:293303 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Laniecki, M, Ignacik, M. 2006. Water–gas shift reaction over sulfided molybdenum catalysts supported on TiO2–ZrO2 mixed oxides. Support characterization and catalytic activity. Catal Today. 116:400407 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Kantschewa, M, Delannay, F, Jeziorowski, H, Delgado, E, Eder, S, Ertl, G, Knözinger, H. 1984. Nature and properties of a potassium-promoted NiMo/Al2O3 water gas shift catalyst. J Catal. 87:482496 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Nickolov, RN, Edreva-Kardjieva, RM, Kafedjiysky, VJ, Nikolova, DA, Stankova, NB, Mehandjiev, DR. 2000. Effect of the order of potassium introduction on the texture and activity of Mo/Al2O3 catalysts in water-gas shift reaction. Appl Catal A Gen. 190:191196 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Edreva-Kardjieva RM , Kafedjiysky VJ, Niкolova DA (2000) In: Petrov L, Bonev Ch, Kadinov G (eds) Effect of the deposition order of the active components on (K)(Ni)Mo/Al2O3 catalysts in water-gas shift reaction. Proceedings of the 9th international symposium on heterogeneous catalysis, Varna, Bulgaria, pp 495500.

    • Search Google Scholar
    • Export Citation
  • 26.

    Edreva-Kardjieva, RM, Alexiev, VD, Nikolova, DA, Gabrovska, MV, Grozeva, TP. 2002. Comparative study of alkali and nickel depozited on and intercalated in MoS2: structure and catalytic activity in water-gas shift reaction. Bulg Chem Commun. 34:461468.

    • Search Google Scholar
    • Export Citation
  • 27.

    Nikolova, D, Edreva-Kardjieva, R, Gouliev, G, Grozeva, T, Tzvetkov, P. 2006. The state of (K)(Ni)Mo/γ-Al2O3 catalysts after water-gas shift reaction in the presence of sulphur in the feed: XPS and EPR study. Appl Catal A Gen. 297:135144 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Nikolova, D, Edreva-Kardjieva, R, Giurginca, M, Meghea, A, Vakros, J, Voyiatzis, GA, Kordulis, Ch. 2007. The effect of potassium addition on the state of the components in the oxide precursor of the (Ni)(Mo)/γ-Al2O3 water-gas shift catalysts: FT-IR, diffuse reflectance and raman spectroscopic studies. Vib Spectrosc. 44:343350 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Giordano, N, Bart, JCJ, Vaghi, A, Castellan, A, Martinotti, G. 1975. Structure and catalytic activity of MoO3-Al2O3 systems I. Solid-state properties of oxidized catalysts. J Catal. 36:8192 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Zingg, DS, Makovsky, LE, Tischer, RE, Brown, FR, Hercules, DM. 1980. Raman spectroscopic study of Co-Mo/γ-Al2O3 catalysts. J Phys Chem. 84:28982906 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Kordulis, Ch, Voliotis, S, Lycourghiotis, A. 1982. Molybdena catalysts prepared on modified carriers: regulation of the symmetry and valence of the molybdenum species formed on γ-Al2O3 modified with alkali cations. J Less-Common Met. 84:187200 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Nikolova, D, Grozeva, T, Edreva-Kardjieva, R. 2002. Effect of K on the catalytic activity of NiO/Al2O3 for water gas shift reaction in H2S presence. Bulg Chem Commun. 34:445453.

    • Search Google Scholar
    • Export Citation
  • 33.

    Hou, P, Meerer, D, Wise, H. 1983. Kinetic studies with a sulphur-tolerant water gas shift catalyst. J Catal. 80:280285 .

  • 34.

    Lund, CRF. 1996. Microkinetics of water-gas shift over Mo/Al2O3 catalysts. Ind Eng Chem Res. 35:25312538 .

  • 35.

    Jiang, M, Bian, G-Z, Fu, Y-L. 1994. Effect of the K-Mo interaction in K-MoO3/γ-Al2O3 catalysts on the properties for alcohol synthesis from syngas. J Catal. 146:144154 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Kantschewa, M, Albano, EV, Ertl, G, Knözinger, H. 1983. Infrared and x-ray photoelectron spectroscopy study of K2CO3/γ-Al2O3. Appl Catal. 8:7184 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Amenomiya, Y, Pleizier, G. 1982. Alkali-promoted alumina catalysts. II. Water-gas shift reaction. J Catal. 76:345353 .

  • 38.

    Stoica, G, Groen, JC, Abello, S, Manchanda, R Perez-Ramirez 2008. Reconstruction of dawsonite by alumina carbonation in (NH4)2CO3: requisites and mechanism. J Chem Mater. 20:39733982 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Walspurger St , Cobden PD, Haije WG, Westerwaal R, Elzinga GD, Safonova OV (2010) In situ XRD detection of reversible dawsonite formation on alkali promoted alumina: a cheap sorbent for CO2 capture. Eur J Inorg Chem 24612464.

    • Search Google Scholar
    • Export Citation