View More View Less
  • 1 Jiangsu Key Laboratory for Environmental Functional Materials, School of Chemistry and Bioengineering, Suzhou University of Science and Technology, Suzhou 215009, China
Restricted access

Abstract

A heterogeneous photo-Fenton catalyst was prepared using the complex tris(1,10)-phenanthroline iron(II) loaded on the NaY type of zeolite. The catalyst displayed a feature of the photo-Fenton degradation of methylene blue, and a linear relationship between ln(C0/Ct) and reaction time was obtained, indicating the kinetic characteristics of a pseudo first-order reaction. The repeated cyclic experiments showed that the heterogeneous catalyst was stable and recoverable. Compared with the traditional homogeneous Fenton reagent, the heterogeneous catalyst has the advantage in the neutral or weakly basic medium used because the active component tris(1,10)-phenanthroline iron(II) is a stable chelate compound. The photo-Fenton degradation pathway for methylene blue was given based on the mass spectral data.

  • 1.

    Herrera, F, Kiwi, J, Lopez, A, Nadtochenko, V. 1999. Photochemical decoloration of remazol brilliant blue and uniblue A in the presence of Fe3+ and H2O2. Environ Sci Technol. 33:31453151 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Chen, J, Zhu, L. 2007. UV-Fenton discolouration and mineralization of Orange II over hydroxyl-Fe-pillared bentonite. J Photochem Photobiol A. 188:5664 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Muruganandham, M, Swaminathan, M. 2004. Photochemical oxidation of reactive azo dye with UV–H2O2 process. Dyes Pigm. 62:269275 .

  • 4.

    Follansbee, DM, Paccione, JD, Martin, LL. 2008. Globally optimal design and operation of a continuous photocatalytic advanced oxidation process featuring moving bed adsorption and draft-tube transport. Ind Eng Chem Res. 47:35913600 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Orozcoa, SL, Bandala, ER, Arancibia-Bulnes, CA, Serrano, B, Suárez-Parra, R, Hernández-Pérez, I. 2008. Effect of iron salt on the color removal of water containing the azo-dye reactive blue 69 using photo-assisted Fe(II)/H2O2 and Fe(III)/H2O2 systems. J Photochem Photobiol A. 198:144149 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Zhao, Y, Hu, J. 2008. Photo-Fenton degradation of 17β-estradiol in presence of α-FeOOHR and H2O2. Appl Catal B. 78:250258 .

  • 7.

    Ansari, A, Peral, J, Domènech, X, Rodríguez-Clemente, R, Casado, J. 1996. Oxidation of S(IV) to S(VI) under Fenton, photo-Fenton and γ-FeOOH photocatalized conditions. J Mol Catal A. 112:269276 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Neyens, E, Baeyens, J. 2003. A review of classic Fenton's peroxidation as an advanced oxidation technique. J Hazard Mater B. 98:3350 .

  • 9.

    Masomboon, N, Ratanatamskul, C, Lu, MC. 2009. Chemical oxidation of 2, 6-dimethylaniline in the Fenton process. Environ Sci Technol. 43:86298634 .

  • 10.

    Zepp, RG, Faust, BC, Hoigné, J. 1992. Hydroxyl radical formation in aqueous reactions (pH 3–8) of iroin (II) with hydrogen peroxide: the photo-fenton reaction. J Environ Sci Technol. 26:313319 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Liu, SQ, Cheng, S, Feng, LR, Wang, XM, Chen, ZG. 2010. Effect of alkali cations on heterogeneous photo-Fenton process mediated by Prussian blue colloids. J Hazard Mater. 182:665671 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Benkelberg, HJ, Warneck, P. 1995. Photodecomposition of Iron(III) hydroxo and sulfato complexes in aqueous solution: wavelength dependence of OH and SO4 2− quantum yields. J Phys Chem. 99:52145221 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Brillas, E, Sirés, I, Oturan, MA. 2009. Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry. Chem Rev. 109:65706631 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Walling, C, Kato, S. 1971. The oxidation of alcohols by Fenton's reagent: the effect of copper ion. J Am Chem Soc. 93:42754281 .

  • 15.

    Lin, SH, Lo, CC. 1997. Fenton process for treatment of desizing wastewater. Wat Res. 31:20502056 .

  • 16.

    Kremer, ML. 2003. The Fenton reaction. Dependence of the rate on pH. J Phys Chem A. 107:17341741 .

  • 17.

    Zhao, YP, Hu, JY, Jin, W. 2008. Transformation of oxidation products and reduction of estrogenic activity of 17-estradiol by a heterogeneous photo-Fenton reaction. Environ Sci Technol. 42:52775284 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Kasiri, MB, Aleboyeh, H, Aleboyeh, A. 2008. Modeling and optimization of heterogeneous photo-Fenton process with response surface methodology and artificial neural networks. Environ Sci Technol. 42:79707975 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Guzsvány, V, Banić, N, Papp, Z, Gaál, F, Abramović, B. 2010. Comparison of different iron-based catalysts for photocatalytic removal of imidacloprid. Reac kinet Mech Cat. 99:225233.

    • Search Google Scholar
    • Export Citation
  • 20.

    Li, J, Wu, F, Deng, N, Glebov, EM, Bazhin, NM. 2008. Degradation of orange II by heterogeneous photocatalytic reaction using montmorillonite KSF. React Kinet Catal Lett. 95:247255 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Parra, S, Nadtotechenko, V, Albers, P, Kiwi, J. 2004. Discoloration of azo-dyes at biocompatible pH-values through an Fe-histidine complex immobilized on Nafion via Fenton-like processes. J Phys Chem B. 108:44394448 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Li, J, Ma, W, Huang, Y, Tao, X, Zhao, J, Xu, Y. 2004. Oxidative degradation of organic pollutants utilizing molecular oxygen and visible light over a supported catalyst of Fe(bpy)3 2+ in water. Appl Catal B. 48:1724 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Lednickyt, LA, Stanbury, DM. 1983. Oxidation of tris(1, 10-phenanthroline)iron(II) by chlorine dioxide. J Am Chem Soc. 105:30983101 .

  • 24.

    Hazmatz, D, Blauer, G. 1983. Reactions of photoexcited methylene blue. Photochem Photobiol. 38:385387 .

  • 25.

    Banat, F, Al-Asheh, S, Al-Rawashdeh, M, Nusair, M. 2005. Photodegradation of methylene blue dye by the UV/H202 and UV/acetone oxidation processes. Desalination. 181:225232 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Lucas, MS, Peres, JA. 2006. Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. Dyes Pigm. 71:236244 .

  • 27.

    Tamimi, M, Qourzal, S, Barka, N, Assabbane, A, Ait-Ichou, Y. 2008. Methomyl degradation in aqueous solutions by Fenton's reagent and the photo-Fenton system. Sep and Purif Technol. 61:103108 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Muthuvel, I, Swaminathan, M. 2008. Highly solar active Fe(III) immobilized alumina for the degradation of acid violet 7. Sol Energy Mater Sol Cells. 92:857863 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Jain, A, Lodha, S, Punjabi, PB, Sharma, VK, Suresh, CA. 2009. A study of catalytic behaviour of aromatic additives on the photo–Fenton degradation of phenol red. J Chem Sci. 121:10271034 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Nedoloujko, A, Kiwi, J. 2000. TiO2 speciation precluding mineralization of 4-tert-butylpyridine accelerated mineralization via fenton photo-assisted reaction. Wat Res. 34:32773284 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Houas, A, Lachheb, KsibiM, Elaloui, E, Guillard, C, Herrmann, JM. 2001. Photocatalytic degradation pathway of methylene blue in water. Appl Catal B. 31:145157 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript submission: www.editorialmanager.com/reac

  • Impact Factor (2019): 1.520
  • Scimago Journal Rank (2019): 0.345
  • SJR Hirsch-Index (2019): 39
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • SJR Quartile Score (2019): Q4 Catalysis
  • Impact Factor (2018): 1.142
  • Scimago Journal Rank (2018): 0.374
  • SJR Hirsch-Index (2018): 37
  • SJR Quartile Score (2018): Q3 Physical and Theoretical Chemistry
  • SJR Quartile Score (2018): Q3 Catalysis

For subscription options, please visit the website of Springer

Reaction Kinetics, Mechanisms and Catalysis
Language English
Size B5
Year of
Foundation
1974
Volumes
per Year
3
Issues
per Year
6
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1878-5190 (Print)
ISSN 1878-5204 (Online)