View More View Less
  • 1 Institute of Nanochemistry and Catalysis, Chemical Research Center, Hungarian Academy of Sciences, Pusztaszeri út 59-67, 1025, Budapest, Hungary
  • | 2 Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
  • | 3 Institute of Isotopes, Hungarian Academy of Sciences, POB 77, 1525, Budapest, Hungary
Restricted access

Abstract

Monocomponent and bicomponent iron and/or titanium modified MCM-41 materials prepared by direct synthesis at room temperature were investigated using X-ray diffraction (XRD), nitrogen physisorption, UV–Vis diffuse reflectance, FT-IR and Mössbauer spectroscopy. Their catalytic behavior was studied in cylohexanol conversion. Materials with high surface area and well-ordered pore structure were obtained. All modified mesoporous silicas possess high activity in cyclohexanol conversion. Bicomponent FeTiMCM-41 catalyst pretreated in hydrogen at 723 K presented the highest activity and selectivity to cyclohexanone.

  • 1.

    Corma, A. 1997. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev. 97:23732420 .

  • 2.

    Wang, Y, Zhang, Q, Shishido, T, Takehira, K. 2002. Characterizations of iron-containing MCM-41 and its catalytic properties in epoxidation of styrene with hydrogen peroxide. J Catal. 209:186196 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Wu, Ch, Kong, Y, Gao, F, Wu, Y, Lu, Y, Wang, J, Dong, L. 2008. Synthesis, characterization and catalytic performance for phenol hydroxylation of Fe-MCM41 with high iron content. Microporous Mesoporous Mater. 113:163170 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Taguchi, A, Schüth, F. 2005. Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater. 77:145 .

  • 5.

    Rodriguis, ACC. 2007. Metallic mixed oxides (Pt, Mn or Cr) as catalysts for the gas-phase toluene oxidation. Catal Commun. 8:12271231 .

  • 6.

    Szegedi, Á, Kónya, Z, Méhn, D, Solymár, E, Pál-Borbély, G, Horváth, ZE, Biró, LP, Kiricsi, I. 2004. Spherical mesoporous MCM-41 materials containing transition metals: synthesis and characterization. Appl Catal A. 272:257266 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Kang, M, Lee, M-H. 2005. Synthesis and characterization of Al-, Bi-, and Fe-incorporated mesoporous titanosilicate (MPTS) materials and their hydrophilic properties. Appl Catal A. 284:215222 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Galacho, C, Carrott, MMLR, Carrot, PJM. 2007. Structural and catalytic properties of Ti–MCM-41 synthesised at room temperature up to high Ti content. Microporous Mesoporous Mater. 100:312321 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Bautista, FM, Campelo, JM, Garcıa, A, Luna, D, Marinas, JM, Quirós, RA, Romero, AA. 2003. Influence of acid–base properties of catalysts in the gas-phase dehydration–dehydrogenation of cyclohexanol on amorphous AlPO4 and several inorganic solids. Appl Catal A. 243:93107 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Ji, D, Zhu, W, Wang, Zh, Wang, G. 2007. Dehydrogenation of cyclohexanol on Cu–ZnO/SiO2 catalysts: the role of copper species. Catal Commun. 8:18911895 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Reddy, BM, Ratnam, KJ, Saikia, P. 2006. Characterization of CaO–TiO2 and V2O5/CaO–TiO2 catalysts and their activity for cyclohexanol conversion. J Mol Catal. 252:238244 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Fridman, VZ, Davydov, AA. 2000. Dehydrogenation of cyclohexanol on copper-containing catalysts: I. the influence of the oxidation state of copper on the activity of copper sites. J Catal. 195:2030 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Fridman, VZ, Davydov, AA, Titievsky, K. 2004. Dehydrogenation of cyclohexanol on copper-containing catalysts: II. The pathways of the cyclohexanol dehydrogenation reaction to cyclohexanone on copper-active sites in oxidation state Cu0 and Cu+. J Catal. 222:545557 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Jeon, GS, Chung, JSH. 1997. Effect of iron on Cu/SiO2 catalysts for the dehydrogenation of cyclohexanol to cyclohexanone. Korean J Chem. 14:4958 .

  • 15.

    Krishna Reddy, G, Rama Rao, KS, Kanta Rao, P. 1999. Effect of the support modification by carbon coverage in the dehydrogenation activity of Cu/Al2O3 catalyst. Catal Lett. 59:157160 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Dobrovolszky, M, Tétényi, P, Paál, Z. 1982. Catalytic transformations of cyclohexanol on Group VIII metal catalysts. J Catal. 74:3143 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Popova, M, Szegedi, Á, Cherkezova-Zheleva, Z, Mitov, I, Kostova, N, Tsoncheva, T. 2009. Toluene oxidation on titanium and iron modified MCM-41 materials. J Hazard Mater. 168:226232 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Hamdy, MS, Mul, G, Jansen, JC, Ebaid, A, Shan, Z, Overweg, AR, Th, Maschmeyer. 2005. Synthesis, characterization, and unique catalytic performance of the mesoporous material Fe-TUD-1 in Friedel–Crafts benzylation of benzene. Catal Today. 100:255260 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Orlov, A, Zhal, Q-Z, Klinowski, J. 2006. Photocatalytic proprerties of the SBA-15 mesoporous silica molecular sieve modified with titanium. J Mater Sci. 41:21872193 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Burns, RG. 1994. Mineral Mössbauer spectroscopy: correlations between chemical shift and quadropole splitting parameters. Hyperfine Interact. 91:739745 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Lázár, K, Pál-Borbély, G, Szegedi, Á, Beyer, HK. 2002. Coordination and oxidation states of iron incorporated in mesoporous MCM41. Hyperfine Interact. 139:1931 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Szegedi, Á, Pál-Borbély, G, Lázár, K. 2001. Comparison of the redox properties of iron incorporated in different amounts into MCM-41. React Kinet Catal Lett. 74:277287 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Kataoka, T, Dumesic, JA. 1988. Acidity of unsupported and silica-supported vanadia, molybdena, and titania as studied by pyridine adsorption. J Catal. 112:6679 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Yang, Zh, Li, J, Yang, X, Xie, X, Wu, Y. 2005. Gas-phase oxidation of alcohols over silver: the extension of catalytic cycles of oxidation of alcohols in liquid-phase. J Mol Catal. 241:1521 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript submission: www.editorialmanager.com/reac

  • Impact Factor (2019): 1.520
  • Scimago Journal Rank (2019): 0.345
  • SJR Hirsch-Index (2019): 39
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • SJR Quartile Score (2019): Q4 Catalysis
  • Impact Factor (2018): 1.142
  • Scimago Journal Rank (2018): 0.374
  • SJR Hirsch-Index (2018): 37
  • SJR Quartile Score (2018): Q3 Physical and Theoretical Chemistry
  • SJR Quartile Score (2018): Q3 Catalysis

For subscription options, please visit the website of Springer

Reaction Kinetics, Mechanisms and Catalysis
Language English
Size B5
Year of
Foundation
1974
Volumes
per Year
3
Issues
per Year
6
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1878-5190 (Print)
ISSN 1878-5204 (Online)