View More View Less
  • 1 Concordia University, 1455 de Maisonneuve Blvd. W, Montréal, QC, H3G 1M8, Canada
Restricted access

Abstract

A simple method to prepare copper nanoparticles under the ambient atmosphere, in an aqueous environment, is developed utilizing solid sodium borohydride as the reducing agent and sodium citrate as a stabilizer and complexing agent. This constitutes a model system having a stability of several hours, sufficient to allow kinetic measurements. The localized surface plasmon resonance band of copper nanoparticles in the UV–Vis spectrum is used to determine the rate of formation of copper nanoparticles and assess the beginning of the oxidation process. The effect of temperature, copper sulfate and sodium borohydride concentrations on the copper nanoparticle formation rate is investigated. It is found that the kinetic data obey a first order rate law with respect to both sodium borohydride and copper sulfate. Based on the kinetic data, a novel mechanism of the reduction reaction is envisaged, involving three possible pathways. As solid sodium borohydride is an important hydrogen storage material, the results of this work are relevant to the field of portable fuel cells. The optical properties of copper nanoparticles have been simulated by using the Discrete Dipole Approximation method and the Mie theory and a good agreement was found between the theoretical and experimental characteristics of the copper plasmon band. The data obtained in this work provide valuable information on the kinetics of reactions at the nanoscale.

  • 1.

    Macalek, B, Krajczyk, L, Morawska-Kowal, T. 2007. Colloidal copper in soda-lime silicate glasses characterized by optical and structural methods. Phys Status Solidi (c). 4:761764 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Acharya, V, Prabha, CR, Narayanamurthy, C. 2004. Synthesis of metal incorporated low molecular weight polyurethanes from novel aromatic diols, their characterization and bactericidal properties. Biomaterials. 25:45554562 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Cioffi, N, Ditaranto, N, Torsi, L, Picca, RA E De Giglio Sabbatini, L, Novello, L, Tantillo, G, Bleve-Zacheo, T, Zambonin, PG. 2005. Synthesis, analytical characterization and bioactivity of Ag and Cu nanoparticles embedded in poly-vinyl-methyl-ketone films. Anal Bioanal Chem. 382:19121918 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Sun, S, Murray, CB, Weller, D, Folks, L, Moser, A. 2000. Monodisperse FePt nanoparticles and ferromagnetic FePt. Nanocryst Superlattices Sci. 278:19891992.

    • Search Google Scholar
    • Export Citation
  • 5.

    Kapoor, S, Palit, DK, Mukherjee, T. 2002. Preparation, characterization and surface modification of Cu metal nanoparticles. Chem Phys Lett. 355:383387 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Wang, J, Huang, H, Kesapragada, SV, Gall, D. 2005. Growth of Y-shaped nanorods through physical vapor deposition. Nano Lett. 5:25052508 .

  • 7.

    Vijaya Kumar, R, Mastai, Y, Diamanta, Y, Gedanken, A. 2001. Sonochemical synthesis of amorphous Cu and nanocrystalline Cu2O embedded in a polyaniline matrix. J Mater Chem. 11:12091213 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Wu, S, Chen, D. 2004. Synthesis of high concentration Cu nanoparticles in aqueous CTAB solutions. J Colloid Interface Sci. 273:165169 .

  • 9.

    Huang, H, Yan, F, Kek, Y, Chew, C, Xu, G, Ji, W, Oh, P, Tang, S. 1997. Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir. 13:172175 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Wang, Y, Asefa, T. 2010. Poly(allylamine)-stabilized colloidal copper nanoparticles: synthesis, morphology, and their surface-enhanced Raman scattering properties. Langmuir. 26:74697474 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Engels, V, Benaskar, F, Jefferson, DA, Johnson, BFG, Wheatley, AEH. 2010. Nanoparticulate copper routes towards oxidative stability. Dalton Trans. 39:64966502.

    • Search Google Scholar
    • Export Citation
  • 12.

    Mott, D, Galkowski, J, Wang, L, Luo, J, Zhong, C-J. 2007. Synthesis of size-controlled and shaped copper nanoparticles. Langmuir. 23:57405745 .

  • 13.

    Wang, Y, Biradar, AV, Wang, G, Sharma, KK, Duncan, CT, Rangan, S, Asefa, T. 2010. Controlled synthesis of water-dispersible faceted crystalline copper nanoparticles and their catalytic properties. Chem Eur. 16:1073510743 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Khanna, PK, Gaikwad, S, Adhyapak, PV, Singh, N, Marimuthu, R. 2007. Synthesis and characterization of copper nanoparticles. Mater L. 61:47114714 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Kim, JH, Germer, TA, Mulholland, GW, Ehrman, SH. 2002. Size-monodisperse metal nanoparticles via hydrogen-free spray pyrolysis. Adv Mater. 14:518521 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Choi, HC, Jung, YM, Kim, SB. 2002. Xanes study of copper nanoparticles in the electrochemical reaction of Li with CuO. Intl J Nanosci. 1:443 .

  • 17.

    Grouchko, M, Kamyshny, A, Ben-Ami, K, Magdassi, S. 2009. Synthesis of copper nanoparticles catalyzed by pre-formed silver nanoparticles. J Nanopart Res. 11:713716 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Xia, X, Xie, C, Cai, S, Yang, Z, Yang, X. 2006. Corrosion characteristics of copper microparticles and copper nanoparticles in distilled water. Corrosion Sci. 48:39243932 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Kanninen, P, Johans, C, Merta, J, Kontturi, K. 2008. Influence of ligand structure on the stability and oxidation of copper nanoparticles. J Colloid Interface Sci. 318:8895 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Alsawafta M , SadAbadi H, Badilescu S, Packirisamy M, Vo-Van Truong (2011) Synthesis and protection of copper nanoparticles in aqueous solution in a microfluidic reactor. In: Proceedings of the 2nd international conference on nanotechnology: fundamentals and applications, Ottawa, 2011.

    • Search Google Scholar
    • Export Citation
  • 21.

    Cai, M, Chen, J, Zhu, J. 2004. Reduction and morphology of silver nanoparticles via liquid–liquid method. Appl Surf Sci. 226:422426 .

  • 22.

    Patakfalvi, R, Virányi, Z, Dékány, I. 2004. Kinetics of silver nanoparticles growth in aqueous polymer solution. Colloid Poly Sci. 283:299305 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Papp, S, Patakfalvi, R, Dékány, I. 2007. Formation and stabilization of noble metal nanoparticles. Croatica Chemica Acta. 80:493502.

    • Search Google Scholar
    • Export Citation
  • 24.

    Kwon S Dong H , Lee S-Y (2010) Study of the reaction rate of gold nanotube synthesis from sacrificial silver nanorods through the galvanic replacement method. J Nanomaterials ID 819279.

    • Search Google Scholar
    • Export Citation
  • 25.

    Yu, W, Xie, H, Chen, L, Li, Y, Zhang, C. 2009. Synthesis and characterization of monodispersed copper colloids in polar solvents. Nanoscale Res Lett. 4:465470 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Dinega, DP, Bawendi, MG. 1999. A solution-phase chemical approach to a new crystal structure of cobalt. Angew Chem Int Ed. 38:17881791 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Fanning, JC, Brooks, BC, Hoeglund, AB, Pelletier, DA, Wadford, JA. 2000. The reduction of nitrate and nitrite ions in basic solution with sodium borohydride in the presence of copper ions (II). Inorg Chem Acta. 310:115119 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Jiang, XC, Chen, CY, Chen, WM, Yu, AB. 2010. Role of citric acid in the formation of silver nanoplates through a synergistic reduction approach. Langmuir. 26:44004408 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Field, TB, McCourt, JL, McBryde, WAE. 1974. Composition and stability of iron and copper citrate complexes in aqueous solution. Can J Chem. 52:31193124 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Henglein, A. 1998. Colloidal silver nanoparticles: photochemical preparation and interaction with O2, CCl4, and some metal ions. Chem Mater. 10:444450 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Richards, VN, Rath, NP, Buhro, WE. 2010. Nucleation control of size and dispersity in aggregative nanoparticles growth. A study of coarsening kinetics of thiolate-capped gold nanocrystals. Chem Mater. 22:35563567 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Lo, CF, Karan, K, Davis, BR. 2007. Kinetic studies of reaction between sodium borohydride and methanol, water, and their mixtures. Ind Eng Chem Res. 46:54785484 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Yan, J-M, Zhang, X-B, Han, S, Shioyama, H, Xu, Q. 2009. Synthesis of longtime water/air stable Ni nanoparticles and their high catalytic activity for hydrolysis of ammonia-borane for hydrogen generation. Inorg Chem. 48:73897393 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Xu, Q, Chandra, M. 2006. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia borane at room temperature. J Power Sources. 163:364370 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Glavee, GN, Klabunde, KJ, Sorensen, CM, Hadjipanayis, GC. 1994. Borohydride reduction of nickel and copper ions in aqueous and non-aqueous media. Controllable chemistry leading to nanoscale metal and metal boride particles. Langmuir. 10:47264730 .

    • Crossref
    • Search Google Scholar
    • Export Citation

Manuscript submission: www.editorialmanager.com/reac

  • Impact Factor (2019): 1.520
  • Scimago Journal Rank (2019): 0.345
  • SJR Hirsch-Index (2019): 39
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • SJR Quartile Score (2019): Q4 Catalysis
  • Impact Factor (2018): 1.142
  • Scimago Journal Rank (2018): 0.374
  • SJR Hirsch-Index (2018): 37
  • SJR Quartile Score (2018): Q3 Physical and Theoretical Chemistry
  • SJR Quartile Score (2018): Q3 Catalysis

For subscription options, please visit the website of Springer

Reaction Kinetics, Mechanisms and Catalysis
Language English
Size B5
Year of
Foundation
1974
Volumes
per Year
3
Issues
per Year
6
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1878-5190 (Print)
ISSN 1878-5204 (Online)