Authors:
C. Munteanu Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Spl. Independentei 202, 060021, Bucharest, Romania

Search for other papers by C. Munteanu in
Current site
Google Scholar
PubMed
Close
,
M. Caldararu Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Spl. Independentei 202, 060021, Bucharest, Romania

Search for other papers by M. Caldararu in
Current site
Google Scholar
PubMed
Close
,
V. Bratan Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Spl. Independentei 202, 060021, Bucharest, Romania

Search for other papers by V. Bratan in
Current site
Google Scholar
PubMed
Close
,
P. Yetisemiyen Chemical Engineering Department, Middle East Technical University, 06531, Ankara, Turkey

Search for other papers by P. Yetisemiyen in
Current site
Google Scholar
PubMed
Close
,
G. Karakas Chemical Engineering Department, Middle East Technical University, 06531, Ankara, Turkey

Search for other papers by G. Karakas in
Current site
Google Scholar
PubMed
Close
, and
N. I. Ionescu Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Spl. Independentei 202, 060021, Bucharest, Romania

Search for other papers by N. I. Ionescu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The electrical conductivity and the catalytic activity of SnO2 loaded TiO2 (anatase) particles were investigated in operando conditions. SnO2 depositions over commercial TiO2 samples (Sigma Aldrich and Rhone Poulenc) were obtained by the impregnation method. The samples were characterized by XRD, SEM/EDX and BET–N2 adsorption techniques. The AC electrical conductivity of the samples were measured between 25 and 400 °C under various atmospheres. The effect of the reactant mixture on the electrical conductivity and the catalytic performances of the samples were tested in propene oxidation. The results showed that the conductivity of SnO2/TiO2 samples depends strongly on the surface area of TiO2 support. The reducing effect of propene is more evident for higher surface area catalysts, these one showing also higher activity. On the other hand, the SnO2 deposition results in an increase of catalytic performances.

  • 1. Morrison, SR 1981 Semiconductor gas sensors. Sens Actuators 2:329341 .

  • 2. Švachula, J, Králíková, B, Tichy, J, Machek, J 1991 Adsorption of reaction components from propene oxidation to acetone on Sn−Mo–O catalysts. React Kinet Catal Lett 44 1 179183 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Weng, LT, Spitaels, N, Yasse, B, Ladrière, J, Ruiz, P, Delmon, B 1991 Phase cooperation between tin and antimony oxides in selective oxidation of isobutene to methacrolein I. Mechanical mixtures of SnO2 and [alpha]-Sb2O4. J Catal 132 2 319342 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Volta, JC, Bussiere, P, Coudurier, G, Herrmann, JM, Vedrine, JC 1985 Tin-antimony mixed oxides: tentative active site identification. Appl Catal 16 3 315328 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Berry, FJ 1981 Tin–antimony oxide catalysts DD Eley HP BW Paul eds. Advances in catalysis, vol 30 Academic Press New York 97131 .

  • 6. Ono, T, Yamanaka, T, Kubokawa, Y, Komiyama, M 1988 Structure and catalytic activity of Sb oxide highly dispersed on SnO2 for propene oxidation. J Catal 109 2 423432 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Weckhuysen, BM, Keller, DE 2003 Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis. Catal Today 78 1–4 2546 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Grzybowska-Swierkosz, B 1997 Vanadia–titania catalysts for oxidation of o-xylene and other hydrocarbons. Appl Catal A Gen 157 1–2 263310 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Satterfield, CN 1980 Heterogeneous catalysis in practice McGraw-Hill New York.

  • 10. Kiselev VF , Krylov OV (1987) Electronic phenomena in adsorption and catalysis. Springer-Verlag, Berlin.

  • 11. Hoffmann, MR, Martin, ST, Choi, W, Bahnemann, DW 1995 Environmental applications of semiconductor photocatalysis. Chem Rev 95 1 6996 .

  • 12. Ohko, Y, Fujishima, A, Hashimoto, K 1998 Kinetic analysis of the photocatalytic degradation of gas-phase 2-propanol under mass transport-limited conditions with a TiO2 film photocatalyst. J Phys Chem B 102 10 17241729 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Herrmann, J-M 1999 Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53 1 115129 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Testino, A, Bellobono, IR, Buscaglia, V, Canevali, C, D'Arienzo, M, Polizzi, S, Scotti, R, Morazzoni, F 2007 Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. A systematic approach. J Am Chem Soc 129 12 35643575 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Carotta, MC, Gherardi, S, Malagù, C, Nagliati, M, Vendemiati, B, Martinelli, G, Sacerdoti, M, Lesci, IG 2007 Comparison between titania thick films obtained through sol–gel and hydrothermal synthetic processes. Thin Solid Films 515 23 83398344 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Zakrzewska, K, Radecka, M, Przewoznik, J, Kowalski, K, Czuba, P 2005 Microstructure and photoelectrochemical characterization of the TiO2–SnO2 system. Thin Solid Films 490 1 101107 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Lin, J, Yu, JC, Lo, D, Lam, SK 1999 Photocatalytic activity of rutile Ti1-xSnxO2 solid solutions. J Catal 183 2 368372 .

  • 18. Dusastre V E. Williams D (1999) Gas-sensitive resistor properties of the solid solution series Ti(Sn1-Sb)1-O (0 < x < 1, y = 0, 0.01, 0.05). J Mater Chem 9 (2): 445450.

    • Search Google Scholar
    • Export Citation
  • 19. Carotta, MC, Gherardi, S, Guidi, V, Malagu, C, Martinelli, G, Vendemiati, B, Sacerdoti, M, Ghiotti, G, Morandi, S, Bismuto, A, Maddalena, P, Setaro, A 2008 (Ti, Sn)O2 binary solid solutions for gas sensing: spectroscopic, optical and transport properties. Sens Actuators B Chem 130 1 3845 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Ries, HE, Leidler, KJ, Innes, WB, Ciapetta, FG, Planck, CJ, Selwood, PW 1954 Catalysis, fundamental principles, vol 1 Reinhold Publishing Co New York.

    • Search Google Scholar
    • Export Citation
  • 21. Caldararu M , Hornoiu C, Postole G, Dragan M, Carata M, Ionescu NI, Petre A, Auroux A (2001) Catalysis for sustainable chemistry: structure, processes and industrial applications. In: Bonev C, Petrov L (eds) Proceedings of United Nations Industrial Development Organisation-UNIDO workshop, Star Press, Sofia, Bulgaria, p 71.

    • Search Google Scholar
    • Export Citation
  • 22. Caldararu, M, Munteanu, C, Chesler, P, Carata, M, Hornoiu, C, Ionescu, N, Postole, G, Bratan, V 2007 Supported oxides as combustion catalysts and as humidity sensors. Tuning the surface behavior by inter-phase charge transfer. Microporous Mesoporous Mater 99 1–2 126131 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Caldararu, M, Postole, G, Hornoiu, C, Bratan, V, Dragan, M, Ionescu, NI 2001 Electrical conductivity of [gamma]-Al2O3 at atmospheric pressure under dehydrating/hydrating conditions. Appl Surf Sci 181 3–4 255264 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Caldararu, M, Sprînceana, D, Popa, VT, Ionescu, NI 1996 Surface dynamics in tin dioxide-containing catalysts II. Competition between water and oxygen adsorption on polycrystalline tin dioxide. Sens Actuators B Chem 30 1 3541 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Jarzebski, ZM, Marton, JP 1976 Physical properties of SnO[sub 2] materials. J Electrochem Soc 123 7 199C205C .

  • 26. Carotta, MC, Cervi, A, Gherardi, S, Guidi, V, Malagu, C, Martinelli, G, Vendemiati, B, Sacerdoti, M, Ghiotti, G, Morandi, S, Lettieri, S, Maddalena, P, Setaro, A 2009 (Ti, Sn)O2 solid solutions for gas sensing: a systematic approach by different techniques for different calcination temperature and molar composition. Sens Actuators B Chem 139 2 329339 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Samson, S, Fonstad, CG 1973 Defect structure and electronic donor levels in stannic oxide crystals. J Appl Phys 44 10 46184621 .

  • 28. Munnix, S, Schmeits, M 1985 Origin of defect states on the surface of TiO_{2}. Phys Rev B 31 6 3369 .

  • 29. Diebold, U 2003 The surface science of titanium dioxide. Surf Sci Rep 48 5–8 53229 .

  • 30. Morrison, SR 1987 Mechanism of semiconductor gas sensor operation. Sens Actuators 11 3 283287 .

  • 31. Carotta, MC, Benetti, M, Ferrari, E, Giberti, A, Malagù, C, Nagliati, M, Vendemiati, B, Martinelli, G 2007 Basic interpretation of thick film gas sensors for atmospheric application. Sens Actuators B Chem 126 2 672677 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript submission: www.editorialmanager.com/reac

For subscription options, please visit the website of Springer Nature.

Reaction Kinetics, Mechanisms and Catalysis
Language English
Size B5
Year of
Foundation
1974
Volumes
per Year
1
Issues
per Year
6
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1878-5190 (Print)
ISSN 1878-5204 (Online)