View More View Less
  • 1 Department of Polymerization Engineering, Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran, Iran
Restricted access

Abstract

The semi-batch slurry polymerization of propylene using a heterogeneous multi-site type Ziegler–Natta catalytic system was studied. A simple kinetic model including initiation, propagation, spontaneous chain transfer, chain transfer to hydrogen, chain transfer to monomer and chain transfer to cocatalyst, and spontaneous deactivation was developed to predict instantaneous rates of polymerization and average molecular weights of final products. Estimation of kinetic parameters was performed using online measurements of polymerization rate and end of batch measurements of average molecular weights. The multivariable nonlinear optimization problem was solved using the Nelder–Mead simplex method for three different site types at three levels of temperatures. The model predicts that the propagation reaction has a lower activation energy than chain transfer reactions which leads to a decrease of molecular weight at elevated temperatures. The deactivation reaction has a higher activation energy than the propagation reaction, which results in decreasing the final rate of polymerization at higher temperatures.

  • 1. Mattos Neto, AG, Freitas, MF, Nele, M, Pinto, JC 2005 Modeling ethylene/1-butene copolymerizations in industrial slurry reactors. Ind Eng Chem Res 44:26972715 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Gonzalez-Ruiz, RA, Quevedo-Sanchez, B, Laurence, RL, Henson, MA, Coughlin, EB 2006 Kinetic modeling of slurry propylene polymerization using rac-ET(Ind)2ZrCl2/MAO. AIChE J 52:18241835 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Ahmadi, M, Nekoomanesh, M, Arabi, H 2010 A Simplified comprehensive kinetic scheme for modeling of ethylene/1-butene copolymerization using Ziegler–Natta catalysts. Macromol React Eng 4:135144 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Zahedi, M, Ahmadi, M, Nekoomanesh, M 2008 Influence of molecular weight distribution on flow properties of commercial polyolefins. J Appl Polym Sci. 108:35653571 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Zahedi, M, Ahmadi, M, Nekoomanesh, M 2008 Influence of microstructure and morphology on stress–strain behavior of commercial high density polyethylene. J Appl Polym Sci 110:624631 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Latado, A, Embiruc, M, Neto, AMG, Pinto, JC 2001 Modeling of end-use properties of poly(propylene/ethylene) resins. J C Polym Test 20:419439 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Wang, WJ, Yan, D, Zhu, S, Hamielec, AE 1998 Kinetics of long chain branching in continuous solution polymerization of ethylene using constrained geometry metallocene. Macromolecules 31:86778683 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Moen, O (2002) Models for bench scale via pilot to commercial scale. In: 2nd European conference on reaction engineering of polyolefins, Wiley Inter Science, Lyon.

    • Search Google Scholar
    • Export Citation
  • 9. Yiannoulahis, H, Yiagopoulos, A, Pladis, P, Kiparissides, C 2000 Comprehensive dynamic model for the calculation of the molecular weight and long chain branching distributions in metallocene-catalyzed ethylene polymerization reactors. Macromolecules 33:27572766 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Soares, JBP, Hamielec, AE 1996 Copolymerization of olefins in a series of continuous stirred-tank reactors using heterogeneous and supported metallocene catalysts: I. General mathematical model. Polym React Eng 4:153191.

    • Search Google Scholar
    • Export Citation
  • 11. Vele Estrada, JM, Hamielec, AE 1994 Modeling of ethylene polymerization with Cp2ZrCl2/MAO catalyst. Polymer 35:808818 .

  • 12. Bergstra, MF, Weickert, G 2005 Ethylene Polymerization Kinetics with a Heterogeneous Metallocene Catalyst–Comparison of Gas and Slurry Phases. Macromol Mater Eng 290:610620 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Kaminskey, W, Muller, F, Sperber, O 2005 Comparison of olefin polymerization processes with metallocene catalysts. Macromol Mater Eng 290:347352 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Khare, NP., Ph.D. thesis, Virginia Polytechnic Institute and State University, Virginia (2003).

  • 15. Kissin, YV 1993 Ethylene polymerization kinetics with heterogeneous Ziegler Natta catalysts. Makromol Chem Macromol Symp 66:8394 .

  • 16. Huang, J, Rempel, GL 1997 Kinetic study of propylene polymerization using Et(H4Ind)2ZrCl2/methylalumoxane catalysts. Ind Eng Chem Res 36:11511157 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Han-Adebekun, GC, Hamba, M, Ray, WH 1997 Kinetic study of gas phase olefin polymerization with a TiCl4/MgCl2 catalyst I. Effect of polymerization conditions. J Polym Sci Part A Polym Chem 35:20632074 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Hamba, M, Han-Adebekun, GC, Ray, WH 1997 Kinetic study of gas phase olefin polymerization with a TiCl4/MgCl2 catalyst. II. Kinetic parameter estimation and model building. J Polym Sci Part A Polym Chem 35:20752096 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Kissin, YV, Mink, RI, Nowlin, TE 1999 Ethylene polymerization reactions with Ziegler–Natta catalysts. I. Ethylene polymerization kinetics and kinetic mechanism. J Polym Sci Part A Polym Chem 37:42554272 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Belelli, PG, Ferreira, ML, Lacunza, MH, Damiani, DE, Brandolin, A 2001 Propylene polymerization in a semibatch reactor. Analysis of soluble metallocene catalyst behavior through reactor modeling. Polym Eng Sci 41:20822094 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Gene Xu, Z, Chakravarti, S, Ray, WH 2001 Kinetic study of olefin polymerization with a supported metallocene catalyst I. Ethylene/propylene copolymerization in gas phase. J Appl Polym Sci 80:81114 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Matos, V, Matos Neto, AG, Pinto, JC 2001 Method for quantitative evaluation of kinetic constants in olefin polymerizations. I. Kinetic study of a conventional Ziegler–Natta catalyst used for propylene polymerizations. J Appl Polym Sci 79:20762108 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Meier, GB, Weickert, G, Van Swaaij, WPM 2001 Gas phase polymerization of propylene. Reaction kinetics and molecular weight distribution. J Polym Sci 39:500513.

    • Search Google Scholar
    • Export Citation
  • 24. Chakravarti, S, Ray, WH 2001 Kinetic study of olefin polymerization with a supported metallocene catalyst. II. Ethylene/1-hexene copolymerization in gas phase. J Appl Polym Sci 80:10961119 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Chakravarti, S, Ray, WH 2001 Kinetic study of olefin polymerization with a supported metallocene catalyst. III. Ethylene homopolymerization in slurry. J Appl Polym Sci 81:29012917 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Chakravarti, S, Ray, WH, Zhang, SX 2001 Kinetic study of olefin polymerization with a supported metallocene catalyst. IV. Comparison of bridged and unbridged catalyst in gas phase. J Appl Polym Sci 81:14511459 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Matos, V, Matos Neto, AG, Nele, M, Pinto, JC 2002 Method for quantitative evaluation of kinetic constants in olefin polymerizations. II. Kinetic study of a high-activity Ziegler–Natta catalyst used for bulk propylene polymerizations. J Appl Polym Sci 86:32263245 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Lahelin, M, Kokko, E, Lehmus, P, Pitkanen, P, Lofgren, B, Seppala, J 2003 Propylene polymerization with rac-SiMe2 (2-Me-4-PhInd)2 ZrMe2/MAO: polymer characterization and kinetic Models. Macromol Chem Phys 204:13231337 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Yao, KZ, Shaw, BM, Kou, B, McAuley, KB, Bacon, DW 2003 Modeling ethylene/butene copolymerization with multi-site catalysts: parameter estimability and experimental design. Polym React Eng 11:563588 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Kou, B, McAuley, KB, Hsu, CCJ, Bacon, DW 2005 Mathematical model and parameter estimation for gas-phase ethylene/hexene copolymerization with metallocene catalyst. Macromol Mater Eng 290:537557 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Kou, B, McAuley, KB, Hsu, CCJ, Bacon, DW, Yao, KZ 2005 Mathematical model and parameter estimation for gas-phase ethylene homopolymerization with supported metallocene catalyst. Ind Eng Chem Res 44:24282442 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Quevedo-Sanchez, B, Nimmons, JF, Coughlin, EB, Henson, MA 2006 Kinetic modeling of the effect of MAO/Zr ratio and chain transfer to aluminum in zirconocene catalyzed propylene polymerization. Macromolecules 39:43064316 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Soares, JBP, Hamielec, AE 1995 Deconvolution of chain-length distributions of linear polymers made by multiple-site-type catalysts. Polymer 36:22572263 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Lagarias, JC, Reeds, JA, Wright, MH, Wright, PE 1998 Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J Optim 9:112147 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Ahmadi, M, Nekoomanesh, M, Jamjah, R, Zohuri, GH, Arabi, H 2007 Modeling of slurry polymerization of ethylene using a soluble Cp2ZrCl2/MAO catalytic system. Macromol Theory Simul 16:557565 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Soares, JBP 2001 Mathematical modeling of the microstructure of polyolefins made by coordination polymerization: a review. Chem Eng Sci 56:41314153 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Vickroy, VV, Schneider, H, Abbott, RF 1993 The separation of SEC curves of HDPE into flory distributions. J Appl Polym Sci 50:551554 .

  • 38. Kissin, YV, Mirabella, FM, Meverden, CC 2005 Multi-center nature of heterogeneous Ziegler–Natta catalysts: TREF confirmation. J Polym Sci Part A Polym Chem 43:43514362 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. Kim, JD, Soares, JBP, Rempel, GL 1999 Synthesis of tailor-made polyethylene through the control of polymerization conditions using selectively combined metallocene catalysts in a supported system. J Polym Sci Part A Polym Chem 37:331339 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40. Liu, Z, Somsook, E, Landis, CRA 2001 2H-Labeling scheme for active-site counts in metallocene-catalyzed alkene polymerization. J Am Chem Soc 123:29152916 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Busico, V, Cipullo, R, Esposito, V 1999 Stopped-flow polymerizations of ethene and propene in the presence of the catalyst system rac-Me2Si (2-methyl-4-phenyl-1-indenyl)2 ZrCl2/methylaluminoxane. Macromol Rapid Commun 20:116121 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42. Odian, G 2004 Principles of Polymerization 4 Wiley New Jersey 662664 .

Manuscript submission: www.editorialmanager.com/reac

  • Impact Factor (2019): 1.520
  • Scimago Journal Rank (2019): 0.345
  • SJR Hirsch-Index (2019): 39
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • SJR Quartile Score (2019): Q4 Catalysis
  • Impact Factor (2018): 1.142
  • Scimago Journal Rank (2018): 0.374
  • SJR Hirsch-Index (2018): 37
  • SJR Quartile Score (2018): Q3 Physical and Theoretical Chemistry
  • SJR Quartile Score (2018): Q3 Catalysis

For subscription options, please visit the website of Springer

Reaction Kinetics, Mechanisms and Catalysis
Language English
Size B5
Year of
Foundation
1974
Volumes
per Year
3
Issues
per Year
6
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1878-5190 (Print)
ISSN 1878-5204 (Online)