The gas phase selective hydrogenation of a series of nitroarenes (nitrobenzene, p-chloronitrobenzene, p-bromonitrobenzene, p-nitroaniline, p-nitrotoluene, p-nitrophenol and p-nitroanisole) has been examined over Au/TiO2 (0.3 % w/w Au, mean Au particle size = 3.9 nm). Compensation behavior is demonstrated with an associated isokinetic temperature (Tiso) of 558 ± 32 K. We account for this response in terms of the selective energy transfer (SET) model where the occurrence of resonance between catalyst and reactant vibrations generates the activated complex. An analysis of the stepwise variation of the activation energies has identified a critical vibrational frequency of 853 cm−1, which is close (±2 cm−1) to the reference value for nitro-group (in-plane symmetric O–N–O bending and stretching) vibrations. Application of SET suggests activation of weakly adsorbed nitroarene (at the support or metal/support interface) by excitation of the nitro-group via IR radiation from a strongly adsorbed surface nitroarene component. The excited nitroarene is then attacked by reactive hydrogen supplied by the Au sites to generate the respective aromatic amine with 100 % selectivity. Agreement of the SET predicted Tiso with the experimental value requires the incorporation of a term due to C–N torsional entropy resulting from distortion of the O–N–O plane.
1. Galwey, AK 1977 Compensation effect in heterogeneous catalysis. Adv Catal 26:247–322 .
2. Bond, GC, Keane, MA, Kral, H, Lercher, JA 2000 Compensation phenomena in heterogeneous catalysis: general principles and a possible explanation. Catal Rev Sci Eng 42:323–383 .
3. Liu, L, Guo, Q-X 2001 Isokinetic relationship, isoequilibrium relationship, and enthalpy–entropy compensation. Chem Rev 101:673–696 .
4. Linert, W, Jameson, RF 1989 The isokinetic relationship. Chem Soc Rev 18:477–505 .
5. Keane, MA, Larsson, R 2006 Isokinetic behaviour in gas phase catalytic haloarene hydrodehalogenation reactions: mechanistic considerations. J Mol Catal A 249:158–165 .
6. Keane, MA, Larsson, R 2009 Application of the selective energy transfer model to account for an isokinetic response in the gas phase reductive cleavage of hydroxyl, carbonyl and carboxyl groups from benzene over nickel/silica. Catal Lett 129:93–103 .
7. Keane, MA, Larsson, R 2007 Isokinetic behaviour in gas phase catalytic hydrodechlorination of chlorobenzene over supported nickel. J Mol Catal A 268:87–94 .
8. Keane, MA, Larsson, R 2008 On the stepwise change of activation energies in the hydrodechlorination of chlorobenzene over supported nickel. Catal Commun 9:333–336 .
9. Larsson, R 1989 A model of selective energy transfer at the active site of the catalyst. J Mol Catal 55:70–83 .
10. Konnecker, G, Boehncke, A, Schmidt, S 2003 Ecotoxicological assessment of p-chloroaniline—fate and effects in aquatic systems. Fresenius Environ Bull 12:589–593.
11. Boehnecke A , Kielhorn J, Konnecker G, Pohlenz-Michel C, Mangelsdorf I (2003) 4-Chloroaniline. CICADS Report 48, WHO, Geneva.
12. Smirnov, YD, Fedorova, LA, Tomilov, AP 1997 Improvement of the electrochemical synthesis of p-chloroaniline. Russ J Electrochem 33:1168–1170.
13. Westerterp, KR KB van Gelder Janssen, HJ, Oyevaar, MH 1988 Developments of catalytic hydrogenation reactors for the fine chemical industry. Chem Eng Sci 43:2229–2236 .
14. Cardenas-Lizana, F, Gomez-Quero, S, Keane, MA 2008 Clean production of chloroanilines by selective gas phase hydrogenation over supported Ni catalysts. Appl Catal A 334:199–206 .
15. Harsy, SG 1990 Homogeneous hydrogenation of nitroaliphatic compounds catalyzed by group VIII transition metal phosphine complexes. Tetrahedron 46:7403–7412 .
16. Zheng, Y, Ma, K, Wang, H, Sun, X, Jiang, J, Wang, C, Li, R, Ma, J 2008 A green reduction of aromatic nitro compounds to aromatic amines over a novel Ni/SiO2 catalyst passivated with a gas mixture. Catal Lett 124:268–276 .
17. Cárdenas-Lizana, F, Gómez-Quero, S, Keane, MA 2008 Ultra-selective gas phase catalytic hydrogenation of aromatic nitro compounds over Au/Al2O3. Catal Commun 9:475–481 .
18. Vishwanathan, V, Jayasri, V, Basha, PM, Mahata, N, Sikhwivhilu, LM, Coville, NJ 2008 Gas phase hydrogenation of ortho-chloronitrobenzene (O-CNB) to ortho-chloroaniline (O-CAN) over unpromoted and alkali metal promoted-alumina supported palladium catalysts. Catal Commun 9:453–458 .
19. Wang, XD, Liang, MH, Zhang, JL, Wang, Y 2007 Selective hydrogenation of aromatic chloronitro compounds. Curr Org Chem 11:299–314 .
20. Coq, B, Figuéras, F 1998 Structure-activity relationships in catalysis by metals: some aspects of particle size, bimetallic and supports effects. Coord Chem Rev 178–180:1753–1783 .
21. Cárdenas-Lizana, F, Gómez-Quero, S, Keane, MA 2008 Exclusive production of chloroaniline from chloronitrobenzene over Au/TiO2 and Au/Al2O3. ChemSusChem 1:215–221 .
22. Cárdenas-Lizana, F, Gómez-Quero, S, Perret, N, Keane, MA 2009 Support effects in the selective gas phase hydrogenation of p-chloronitrobenzene over gold. Gold Bull 42:124–132 .
23. Cárdenas-Lizana, F, Gómez-Quero, S, Hugon, A, Delannoy, L, Louis, C, Keane, MA 2009 Pd-promoted selective gas phase hydrogenation of p-chloronitrobenzene over alumina supported Au. J Catal 262:235–243 .
24. Cárdenas-Lizana, F, Gómez-Quero, S, Perret, N, Keane, MA 2011 Gold catalysis at the gas-solid interface: role of the support in determining activity and selectivity in the hydrogenation of m-dinitrobenzene. Catal Sci Technol 1:652–661 .
25. Cárdenas-Lizana, F, Gómez-Quero, S, Kiwi-Minsker, L, Keane, MA 2012 Gold nano-particles supported on hematite and magnetite as highly selective catalysts for the hydrogenation of nitro-aromatics. Int J Nanotechnol 9:92–113 .
26. Fu, X, Clark, LA, Yang, Q, Anderson, MA 1996 Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2. Environ Sci Technol 30:647–653 .
27. Tavoularis, G, Keane, MA 1999 The gas phase hydrodechlorination of chlorobenzene over nickel/silica. J Chem Technol Biotechnol 74:60–70 .
28. Yuan, G, Keane, MA 2003 Liquid phase catalytic hydrodechlorination of 2,4-dichlorophenol over carbon supported palladium: an evaluation of transport limitations. Chem Eng Sci 58:257–267 .
29. Haller, GL, Resasco, DE 1989 Metal support interactions—group VIII metals and reducible oxides. Adv Catal 36:173–235 .
30. Sekiya, T, Yagisawa, T, Kurita, S 2001 Annealing of anatase titanium dioxide under hydrogen atmosphere. J Ceram Soc Jpn 109:672–675 .
31. Haruta, M 2002 Catalysis of gold nanoparticles deposited on metal oxides. CATTECH 6:102–115 .
32. Blaser, H-U, Steiner, H, Studer, M 2009 Selective catalytic hydrogenation of functionalized nitroarenes: an update. ChemCatChem 1:210–221 .
33. Li, C-H, Yu, Z-X, Yao, K-F, Jib, S-F, Liang, J 2005 Nitrobenzene hydrogenation with carbon nanotube-supported platinum catalyst under mild conditions. J Mol Catal A 226:101–105 .
34. Zhao, F, Ikushima, Y, Arai, M 2004 Hydrogenation of nitrobenzene with supported platinum catalysts in supercritical carbon dioxide: effects of pressure, solvent, and metal particle size. J Catal 224:479–483 .
35. Ragaini, F, Cenini, S, Gasperini, M 2001 Reduction of nitrobenzene to aniline by CO/H2O, catalysed by Ru-3(CO)(12)/chelating diimines. J Mol Catal A 174:51–57 .
36. Pérez, MM, Martínez de Lecea, S, Solano, AL 1997 Platinum supported on activated carbon cloths as catalyst for nitrobenzene hydrogenation. Appl Catal 151:461–475 .
37. Jiménez-González, C, Poechlauer, P, Broxterman, QB, Yang, B-S, Ende, DA, Baird, J, Bertsch, C, Hannah, RE, Dell'Orco, P, Noorrnan, H, Yee, S, Reintjens, R, Wells, A, Massonneau, V, Manley, J 2011 Key green engineering research areas for sustainable manufacturing: a perspective from pharmaceutical and fine chemical manufacturers. J Org Proc Res Dev 15:900–911.
38. Shlyapochnikov, V-A, Khaikin, LS, Grikina, OE, Bock, CW, Vilkov, LV 1994 The structure of nitrobenzene and the interpretation of the vibrational frequencies of the NO2 moiety on the basis of ab initio calculations. J Mol Struct 326:1–16 .
39. Clarkson, J, Smith, WE 2003 A DFT analysis of the vibrational spectra of nitrobenzene. J Mol Struct 655:413–422 .
40. Muralidhar Rao, P, Rao, GR 1989 Vibrational spectra and normal coordinate analysis of monohalogenated nitrobenzenes. J Raman Spectrosc 20:529–540 .
41. Green, JHS, Harrison, DJ 1970 Vibrational spectra of benzene derivatives 10: monosubstituted nitrobenzenes. Spectrochim Acta A 26A:1925–1932 .
42. Kavitha, E, Sundaraganesan, N, Sebastian, S 2010 Molecular structure, vibrational spectroscopic and HOMO-LUMO studies of 4-nitroaniline by density functional method. Ind J Pure Appl Phys 48:20–30.
43. Spectrum ID NIDA423, Integrated spectral database system of organic compounds, National Institute of Advanced Industrial Science and Technology, Tsukuba.
44. Kishore, Y, Sharma, SN, Dwivedi, CPD 1974 Infrared absorption spectra of o-nitrophenols, m-nitrophenols and p-nitrophenols. Ind J Phys 48:412–414.
45. Kovacs, A, Izvekov, V, Keresztury, G, Pongor, G 1998 Vibrational analysis of 2-nitrophenol. A joint FT-IR, FT-Raman and scaled quantum mechanical study. Chem Phys 238:231–243 .
46. Krishnakumar, V, Prabavath, N 2009 Simulation of IR and Raman spectra of p-hydroxyanisole and p-nitroanisole based on scaled DFT force fields and their vibrational assignments. Spectrochim Acta A 74:154–161 .
47. Grujic-Brojcin, MJ, Scepanovic, Z, Dohcevic-Mitovic, D, Hionic, I, Matovic, B, Styanisic, G, Popovic, ZV 2005 Infrared study of laser synthesized anatase TiO2 nanopowders. J Phys D 38:1415–1420 .
48. Eagles, M 1964 Polar modes of lattice vibration and polaron coupling constants in rutile (TiO2). J Phys Chem Solids 25:1243–1251 .
49. Taylor, JG, Smith, HG, Nicklow, RM, Wilkinsson, MK 1971 Lattice dynamics of rutile. Phys Rev B 3:3457–3472 .
50. Corma, A, Concepcion, P, Serna, P 2007 A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts. Angew Chem Int Ed 46:7266–7269 .
51. Boronet, M, Concepcion, P, Corma, A, Gonzalez, S, Illas, F, Serna, P 2007 A molecular mechanism for chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of gold on TiO2 catalysts: a cooperative effect between gold and the support. J Am Chem Soc 129:16230–16237 .
52. Syomin, D, Wang, J, Koel, BE 2001 Monolayer and multilayer films of nitrobenzene on Au(111) surfaces: bonding and geometry. Surf Sci Lett 495:L827 .
53. Claus, P 2005 Heterogeneously catalysed hydrogenation using gold catalysts. Appl Catal A 291:222–229 .
54. Hashmi, ASK, Hutchings, GJ 2006 Gold catalysis. Angew Chem Int Ed 45:7896–7936 .
55. Bus, E, Miller, JT JA van Bokhoven 2005 Hydrogen chemisorption on Al2O3-supported gold catalysts. J Phys Chem B 109:14581–14587 .
56. Boronat, M, Illas, F, Corma, A 2009 Active sites for H2 adsorption activation in Au/TiO2 and the role of the support. J Phys Chem 113:3750–3757 .
57. Zanella, R, Louis, C, Giorgio, S, Touroude, R 2004 Crotonaldehyde hydrogenation by gold supported on TiO2: structure sensitivity and mechanism. J Catal 223:328–339 .
58. Mohr, C, Hofmeister, H, Claus, P 2003 The influence of real structure of gold catalysts in the partial hydrogenation of acrolein. J Catal 213:86–94 .
59. Cárdenas-Lizana, F, Gómez-Quero, S ZM de Pedro Keane, MA 2010 Gas phase hydrogenation of nitroarenes: a comparison of the catalytic action of titania supported gold and silver. J Mol Catal A 326:48–54 .
60. Svensson, K, Bellman, J, Hellman, A, Andersson, S 2005 Dipole active rotations of physisorbed H2 and D2. Phys Rev B 71:245402 .
61. Bellman, J, Svensson, K, Andersson, S 2006 Molecular hydrogen adsorption at surface adatoms. J Chem Phys 125:064704 .
62. Larsson, R, Jamroz, MH, Borowiak, MA 1998 On the catalytic decomposition of formic acid. I. The activation energies for oxide catalysis. J Mol Catal A 129:41–51 .
63. Larsson, R 1989 On the catalytic decomposition of nitrous oxide over metal oxides. Catal Today 4:235–251 .
64. Herzberg, G 1950 Spectra of diatomic molecules 2 Van Nostrand New York.
65. Herzberg, G 1945 Infrared and Raman spectra of polyatomic molecules Van Nostrand New York.
66. Kiat, J-M, Beldirazzi, G, Dunlop, M, Malibert, C, Dkhil, B, Menoret, C, Masson, O, Fernandez-Diaz, MT 2000 Anharmonicity and disorder in simple and complex perovskites: a high energy synchrotron and hot neutron diffraction study. J Phys Condens Matter 12:8411–8426 .
67. Ravindren, TR, Sivasubramanian, V, Arora, AK 2005 Low temperature Raman spectroscopic study of scandium molybdate. J Phys Condens Matter 17:277–286 .
68. Hardwick, JL, Brand, JCD 1976 Anharmonic potential constants and large amplitude bending vibration in nitrogen dioxide. Can J Phys 54:80–91 .
69. Bratlie, KM, Li, Y, Larsson, R, Somorjai, GA 2008 Compensation effect of benzene hydrogenation on Pt(111) and Pt(100) analyzed by the selective energy transfer model. Catal Lett 121:173–178 .
70. Glasstone, S 1946 Textbook of physical chemistry 2 Van Nostrand New York.
71. Lewis, GN, Randall, M, Pitzer, KS, Brewer, L 1961 Thermodynamics 2 McGraw-Hill New York.
72. Ercolani, G 1999 Comment on “using a convenient, quantitative model for torsional entropy to establish qualitative trends for molecular processes that restrict conformational freedom”. J Org Chem 86:3350–3353 .
73. Makaryan, IA, Savchenko, VI 1993 N-Arylhydroxylamines transformation in the presence of heterogeneous catalysts. Stud Surf Sci Catal 75:2439–2442 .
74. Siegrist, U, Baumeister, P, Blaser, H-U 1998 The selective hydrogenation of functionalized nitroarenes: new catalytic systems. Chem Ind 75:207–219.
75. Spectrum ID NIDA34841, Integrated spectral database system of organic compounds, National Institute of Advanced Industrial Science and Technology, Tsukuba.