View More View Less
  • 1 Department of Inorganic Technology, Institute of Chemical Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
  • 2 J. Heyrovský Institute of Physical Chemistry AS CR, Dolejškova 3, 182 23, Prague, Czech Republic
  • 3 Institute of Chemical Process Fundamentals AS CR, Rozvojova 135, 165 02, Prague, Czech Republic
  • 4 Faculty of Environment, University of J.A. Purkyne, Kralova vysina 3132, 400 96, Usti n. L, Czech Republic
Restricted access

Abstract

Photocatalytic activities of a series of well available commercial TiO2 powders in both suspended and immobilized forms were determined by kinetic measurements of the degradation of acid orange 7 as model compound. Although the powders showed lower photoactivity in the immobilized than suspended form, the differences among particular materials considerably varied. The porosity of the photocatalysts and related adsorption/desorption phenomena strongly influence the photocatalytic degradations occurring in aqueous suspension. The adsorption of the azo dye has a significant effect on observed concentration changes during irradiation and must be taken in account in the evaluation of degradation rates in suspensions. No direct correlation between photocatalyst material properties and photoactivity was found. The paper brings a convincing discussion that, with only minor exceptions, it is not possible to form any general conclusions on the performance of a standard type photocatalyst, even if a model reactant is used.

  • 1. Soutsas, K, Karayannis, V, Poulios, I, Riga, A, Ntampegliotis, K, Spiliotis, X, Papapolymerou, G 2010 Decolorization and degradation of reactive azo dyes via heterogeneous photocatalytic processes. Desalination 250:345350 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Zlamal, M, Krysa, J, Jirkovsky, J 2009 Photocatalytic degradation of acid orange 7 on TiO2 films prepared from various powder catalysts. Catal Lett 133:160166 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Mozia, S, Morawski, AW, Toyoda, M, Inagaki, M 2009 Application of anatase-phase TiO2 for decomposition of azo dyes in a photocatalytic membrane reactor. Desalination 241:97105 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Konstantinou, IK, Albanis, TA 2004 TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution, kinetic and mechanistic investigations. Appl Catal B 49:114 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Zita, J, Krysa, J, Mills, A 2009 Correlation of oxidative and reductive dye bleaching on TiO2 photocatalyst films. J Photochem Photobiol A 203:119124 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Chen, F, Xie, Y, Zhao, J, Lu, G 2001 Photocatalytic degradation of dyes on a magnetically separated photocatalyst under visible and UV irradiation. Chemosphere 44:11591168 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Goncalves, MST, Oliveira-Campos, AMF, Pinto, EMMS, Plasencia, PMS, Queiroz, MJRP 1999 Photochemical treatment of solutions of azo dyes containing TiO2. Chemosphere 39:781786 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Tanaka, K, Padermpole, K, Hisanaga, T 1999 Photocatalytic degradation of commercial azo dyes. Water Res 34:327333 .

  • 9. Lachheb, H, Puzenat, H, Houas, A, Ksibi, M, Elaloui, E, Guillard, C, Herrmann, JM 2002 Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl Catal B 39:7590 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Curkovic, L, Ljubas, D, Juretic, H 2010 Photocatalytic decolorization kinetics of diazo dye Congo Red aqueous solution by UV/TiO2 nanoparticles. React Kinet Mech Catal 99:201208.

    • Search Google Scholar
    • Export Citation
  • 11. Malato, S, Fernandez-Ibanez, P, Maldonado, MI, Blanco, J, Gernjak, W 2004 Decontamination and disinfection of water by solar photocatalysis, recent overview and trends. Catal Today 49:114.

    • Search Google Scholar
    • Export Citation
  • 12. Ohtani, B 2008 Preparing articles on photocatalysis—beyond the illusions, misconceptions, and speculation. Chem Lett 37:216229 .

  • 13. Ohtani, B, Prieto-Mahaney, OO, Amano, F, Murakami, N, Abe, R 2010 What are titania photocatalysts?-an exploratory correlation of photocatalytic activity with structural and physical properties. J Adv Oxid Technol 13:247261.

    • Search Google Scholar
    • Export Citation
  • 14. Amano, F, Yasumoto, T, Prieto-Mahaney, OO, Uchida, S, Shibayama, T, Terada, Y, Ohtani, B 2010 Highly active titania photocatalyst particles of controlled crystal phase, size, and polyhedral shapes. Top Catal 53:455461 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Kluson, P, Morozova, M, Solcova, O, Zlamal, M, Krysa, J, Kment, S, Steck, T 2009 Role of the template molecular structure on the photo-electrochemical functionality of titania thin films. J Sol Gel Sci Technol 52:398407 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Egerton, TA, Harrison, RW, Hill, SE, Mattinson, JA, Purnama, H 2010 Effects of particle dispersion on the measurement of semi-conductor photocatalytic activity. J Photochem Photobiol 216:268274 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Krýsa, J, Waldner, G, Měšťánková, H, Jirkovský, J, Grabner, G 2006 Photocatalytic degradation of model organic pollutants on an immobilized particulate TiO2 layer. Roles of adsorption processes and mechanistic complexity. Appl Catal B Environ 64:290301 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Mladenova, D, Dushkin, C, Li Puma, G 2008 Photocatalysis with TiO2 and SnO2/TiO2 films examined by a kinetic model. J Adv Oxid Technol 11:477485.

    • Search Google Scholar
    • Export Citation
  • 19. Torimoto, T, Aburakawa, Y, Kawahara, Y, Ikeda, S, Ohtani, B 2004 Light intensity dependence of the action spectra of photocatalytic reactions with anatase titanium(IV) oxide. Chem Phys Lett 392:220224 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Jarandehei, A, Golpayegani, MK A De Visscher 2008 Kinetic modelling of photocatalytic degradation reactions, effect of charge trapping. Appl Catal B 84:6574 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Li, Y, Sun, S, Ma, M, Ouyang, Y, Yan, W 2008 Kinetic study and model of the photocatalytic degradation of Rhodamine B (RhB) by a TiO2-coated activated carbon catalyst, Effects of initial RhB content, light intensity and TiO2 content in the catalyst. Chem Eng J 142:147155 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Serpone, N 2007 Some remarks on so-called heterogeneous photocatalysis and on the mechanical application of the Langmuir–Hinshelwood kinetic model. J Adv Oxid Technol 10:111115.

    • Search Google Scholar
    • Export Citation
  • 23. Serrano, B H De Lasa 1999 Photocatalytic degradation of organic pollutants in water, pollutant reactivity and kinetic modeling. Chem Eng Sci 54:30633069 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Herrmann, JM 2010 Fundamentals and misconceptions in photocatalysis. J Photochem Photobiol A 216:8593 .

  • 25. Herrmann, JM 2010 Photocatalysis fundamentals revisited to avoid several misconceptions. Appl Catal B 99:461468 .

  • 26. Emeline, AV, Ryabchuk, VK, Serpone, N 2005 Dogmas and misconceptions in heterogeneous photocatalysis. Some enlightened reflections. J Phys Chem B 109:1851518521 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Mills, A, Wang, J, Ollis, DF 2006 Kinetics of liquid phase semiconductor photoassisted reactions, supporting observations for a pseudo-steady-state model. J Phys Chem B 110:1438614390 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Ollis, DF 2005 Kinetic disguises in heterogeneous photocatalysis. Top Catal 35:217223 .

  • 29. Ollis, DF 2005 Kinetics of liquid phase photocatalyzed reactions, an illuminating approach. J Phys Chem B 109:24392444 .

  • 30. Murzin, DY 2006 Heterogeneous photocatalytic kinetics, beyond the adsorption/desorption equilibrium concept. React Kinet Catal Lett 89:277284 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Emeline, AV, Ryabchuk, V, Serpone, N 2000 Factors affecting the efficiency of a photocatalyzed process in aqueous metal-oxide dispersions. Prospect of distinguishing between two kinetic models. J Photochem Photobiol A 133:8997 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Ryabchuk, V 2004 Photophysical processes related to photoadsorption and photocatalysis on wide band gap solids. Int J Photoenerg 6:95113 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Kluson, P, Hejda, S, Hejdova, M, Krysa, J 2011 A genuine way to mimic the solar-light conditions in UV driven heterogeneous photocatalytic reactions. React Kinet Catal Mech 104:273280 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Krýsa, J, Waldner, G, Měšťánková, H, Jirkovský, J, Grabner, G 2006 Photocatalytic degradation of model organic pollutants on an immobilized particulate TiO2 layer. Role of adsorption processes and mechanistic complexity. Appl Catal B 64:290301 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Ryu, J, Choi, W 2008 Substrate—specific photocatalytic activities of TiO2 and multiactivity test for water treatment applications. Environ Sci Technol 42:294300 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Prieto-Mahaney, OO, Murakami, N, Abe, R, Ohtani, B 2009 Correlation between photocatalytic activities and structural and physical properties of titanium (IV) oxide powders. Chem Lett 38:238239 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Rego, E, Marto, J, São Narcis, P, Labrincha, JA 2009 Decolouration of orange II solutions by TiO2 and ZnO active layers screen-printed on ceramic tiles under sunlight irradiation. Appl Catal A 355:109114 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Bourikas, K, Stylidi, M, Kondarides, DI, Verykios, XE 2005 Adsorption of acid orange 7 on the surface of titanium dioxide. Langmuir 21:92229230 .

  • 39. O'Rourke, C, Mills, A 2010 Adsorption and photocatalytic bleaching of acid orange 7 on P25 titania. J Photochem Photobiol A 216:261267 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40. Kisch, H 2010 On the problem of comparing rates or apparent quantum yields in heterogeneous photocatalysis. Angew Chem Int Ed 49:95889589 .

  • 41. Juang, RS, Lin, SH, Hsueh, PY 2010 Removal of azo dyes from water by UV-irradiated degradation in TiO2 suspensions. J Hazard Mater 182:820826 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42. Vione, D, Minero, C, Maurino, V, Carlotti, ME, Picatonotto, T, Pelizzetti, E 2005 Degradation of phenol and benzoic acid in the presence of TiO2 based heterogeneous photocatalyst. Appl Catal B 58:7998 .

    • Crossref
    • Search Google Scholar
    • Export Citation