Authors:
Natpakan Srisawad Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

Search for other papers by Natpakan Srisawad in
Current site
Google Scholar
PubMed
Close
,
Wasu Chaitree Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

Search for other papers by Wasu Chaitree in
Current site
Google Scholar
PubMed
Close
,
Okorn Mekasuwandumrong Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakorn Pathom 73000, Thailand

Search for other papers by Okorn Mekasuwandumrong in
Current site
Google Scholar
PubMed
Close
,
Artiwan Shotipruk Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

Search for other papers by Artiwan Shotipruk in
Current site
Google Scholar
PubMed
Close
,
Bunjerd Jongsomjit Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

Search for other papers by Bunjerd Jongsomjit in
Current site
Google Scholar
PubMed
Close
, and
Joongjai Panpranot Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

Search for other papers by Joongjai Panpranot in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The properties of Co/Al2O3 catalysts prepared by the solid-state reaction between gibbsite and various cobalt salts such as cobalt acetate (CoAc), cobalt acetylacetonate, cobalt chloride, and cobalt nitrate (CoNT) were investigated in the hydrogenation of carbon dioxide at 270 °C and atmospheric pressure and characterized by N2 physisorption, X-ray diffraction, X-ray photoelectron spectroscopy, and H2-temperature programmed reduction. Compared to the catalyst prepared by conventional impregnation of aqueous solution of cobalt nitrate on alumina (CoNT-Imp), the solid-state catalysts (CoNT and CoAc) exhibited much higher activity in the CO2 hydrogenation with comparable CH4 and CO selectivity. Unlike the impregnation catalysts, in which most of the Co3O4 particles/clusters were located deep inside the pores of alumina, the solid-state reaction resulted in the dispersion of cobalt oxides mostly on the external surface of alumina. As a consequence, CO2 adsorption and dissociation to adsorbed CO and O (the initial steps in CO2 hydrogenation) were not limited by the slow diffusion of CO2 so high CO2 hydrogenation activity was obtained. As revealed by the XRD and H2-TPR results, the average crystallite size of Co3O4 and the metal-support interaction depended on the cobalt precursor used during the solid-state synthesis. Nevertheless, the solid-state reaction of gibbsite and cobalt chloride at 650 °C resulted in very poor CO2 hydrogenation activity due to the formation of inactive cobalt aluminate.

  • 1. Kim, MS, Bae, WJ, Lee, JY, Jun, WK 2008 Catal Commun 9:22692273 .

  • 2. Somorjai, GA 1994 Introduction to surface chemistry and catalysis Wiley New York.

  • 3. Dry, ME 1996 Appl Catal A 138:319344 .

  • 4. Adesina, AA 1996 Appl Catal A 138:345367 .

  • 5. Iglesia, E 1997 Appl Catal A 161:5978 .

  • 6. Sahki, R, Benlounes, O, Cherifi, O, Thouvenot, R, Bettahar, MM, Hocine, S 2011 React Kinet Mech Catal 103:391403 .

  • 7. Peebles, DE, Goodman, DW, White, JM 1983 J Phys Chem 87:43784387 .

  • 8. Riedel, T, Claeys, M, Schulz, H, Schaub, G, Nam, SS, Jun, KW, Choi, MJ, Kishan, G, Lee, KW 1999 Appl Catal A 186:201213 .

  • 9. Marwood, M, Doepper, R, Prairie, M, Renken, A 1994 Chem Eng Sci 49:48014809 .

  • 10. Solymosi, F, Erdohelyi, A, Kocsis, M 1981 J Chem Soc, Faraday Trans 1:10031012.

  • 11. Scire, S, Crisafulli, C, Maggiore, R, Minico, S, Galvagno, S 1998 Catal Lett 51:4145 .

  • 12. Kondarides, DI, Panagiotopoulou, P, Verykios, XE 2011 J Phys Chem C 115:12201230 .

  • 13. Behm, RJ, Eckle, S, Denkwitz, Y 2010 J Catal 269:255268 .

  • 14. McFarland, EW, Park, JN 2009 J Catal 266:9297 .

  • 15. Erdohelyi, A, Pasztor, M, Solymosi, F 1986 J Catal 98:166177 .

  • 16. Solymosi, F, Erdohelyi, A, Bansagi, T 1981 J Catal 68:371382 .

  • 17. Zhang, ZL, Kladi, A, Verykios, XE 1994 J Catal 148:737747 .

  • 18. Iizuka, T, Tanaka, Y, Tanabe, K 1982 J Mol Catal 17:381389 .

  • 19. Karelovic, A, Ruiz, P 2012 Appl Catal B 113–114:237249.

  • 20. Chang, FW, Kuo, MS, Tsay, MT, Hsieh, MC 2003 Appl Catal A 247:309320 .

  • 21. Aksoylu, AE, Onsan, ZH 1997 Appl Catal A 164:111 .

  • 22. Janlamool, J, Praserthdam, P, Jongsomjit, B 2011 J Nat Gas Chem 20:558564 .

  • 23. Akin, NA, Ataman, M, Aksoylu, EA, Onsan, IZ 2002 React Kinet Catal Lett 76:265270 .

  • 24. Hussain, TS, Mazhar, M, Rahman, UHM, Bari, M 2009 Environ Technol 30:543559 .

  • 25. Visconti, GC, Lietti, L, Tronconi, E, Forzatti, P, Zennaro, R, Finocchio, E 2009 Appl Catal A 355:6168 .

  • 26. Das, T, Deo, G 2011 J Mol Catal A 350:7582 .

  • 27. Weatherbee, GD, Bartholomew, CH 1984 J Catal 87:352362 .

  • 28. Khodakov, AY, Chu, W, Fongarland, P 2007 Chem Rev 107:16921744 .

  • 29. Niemela, MK, Backman, L, Krause, AOI, Vaara, T 1997 Appl Catal A 156:319334 .

  • 30. Khassin, AA, Yurieva, TM, Kustova, GN, Itenberg, IS, Demeshkina, MP, Krieger, TA, Plyasova, LM, Chermashentseva, GK, Parmon, VN 2001 J Mol Catal A 168:193207 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Reuel, RC, Bartholomew, CH 1984 J Catal 85:7888 .

  • 32. Mikhailova, VY, Sviderskii, AS, Mishin, VI, Mordkovich, ZV 2007 Russ Chem Bull 56:19221926 .

  • 33. Li, F, Yu, X, Pan, H, Wang, M, Xin, X 2000 Solid-State Sci 2:767772 .

  • 34. Ji, L, Lin, J, Zeng, CH 2000 J Phys Chem 104:17831790 .

  • 35. Kraum, M, Baerns, M 1999 Appl Catal A 186:189200 .

  • 36. Jongsomjit, B, Wongsalee, T, Praserthdam, P 2005 Catal Commun 6:705710 .

  • 37. Panpranot, J JG Goodwin Jr Sayari, A 2002 Catal Today 77:269284 .

  • 38. Zhang, Y, Wei, D, Hammache, S JG Goodwin Jr 1999 J Catal 188:281290 .

  • 39. Ernst, B, Libs, S, Chaumette, P, Kiennemann, A 1999 Appl Catal A 186:145168 .

  • 40. Lapidus, A, Krylova, A, Kazanskii, V, Borovkov, V, Zaitsev, A, Rathousky, J, Zukal, A, Jancálková, M 1991 Appl Catal 73:6568 .

  • 41. Jongsomjit, B, Panpranot, J JG Goodwin Jr 2001 J Catal 204:98109 .

  • 42. Panpranot, J, Kaewkun, S, Praserthdam, P JG Goodwin Jr 2003 Catal Lett 91:95102 .

  • 43. Riedel, T, Schaub, G 2003 Top Catal 26:145156 .

  • 44. Zsoldos, Z, Guczi, L 1992 J Phys Chem 96:93939400 .

  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript submission: www.editorialmanager.com/reac

For subscription options, please visit the website of Springer Nature.

Reaction Kinetics, Mechanisms and Catalysis
Language English
Size B5
Year of
Foundation
1974
Volumes
per Year
1
Issues
per Year
6
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1878-5190 (Print)
ISSN 1878-5204 (Online)