The oxidation of thioanisole to its sulfone with hydrogen peroxide (H2O2) in the presence of acetic acid and Amberlyst 15 was investigated and found to be a simple and effective method. Oxidation experiments in the absence of acetic acid or Amberlyst 15 confirmed the essentiality of these components for the complete oxidation of thioanisole to its sulfone with H2O2. In the two-step oxidation process of sulfide, in the oxidation of sulfide to sulfoxide, H2O2 plays a major role, whereas in the oxidation of sulfoxide to sulfone, peracetic acid formed with H2O2 in the presence of acetic acid and Amberlyst 15 plays a major role. Sulfone formation increased with an increase in H2O2, temperature and Amberlyst 15 and decreased with acetic acid. However, with a very low amount of acetic acid, sulfone formation decreased due to water in H2O2 and released in the reaction. Reutilization of Amberlyst 15 for six cycles resulted in a 6.8 % decrease in sulfone yield and 3.4 % decrease in oxygenation. Dialkyl, dibenzyl, diphenyl, alkylaryl, arylbenzyl, alkylbenzyl sulfides are completely oxidized with this oxidation system to their corresponding sulfones. The reactivity of sulfides is in the order dialkyl > dibenzyl > diphenyl sulfides, which is in line with their order of nucleophilicity.
1. Patai S , Rappoport Z, Stirling CJM (eds) (1988) The chemistry of sulphones and sulphoxides. Wiley, New York.
2. Patai, S, Rappoport, Z 1994 The synthesis of sulphones, sulphoxides and cyclic sulfides Wiley New York.
3. Page PCB (1995) Organosulfur chemistry: synthetic aspects. Academic Press, London.
4. Kagan, HB, Luukas, T 1998 M Beller C Bolm eds. Transition metals for organic synthesis 2 Wiley Weinheim 361–373 .
5. Jackson, DA, Rawlinson, H, Barba, O 2001 R Soc Chem 260:47–53.
6. Simpkins, NS 1993 Sulphones in organic synthesis Pergamon Oxford.
7. Legros, J, Dehli, JR, Bolm, C 2005 Adv Synth Catal 347:19–31 .
8. Otsuki, S, Nonaka, T, Takashima, N, Qian, W, Ishihara, A, Imai, T, Kabe, T 2000 Energy Fuels 14:1232–1239 .
9. Rao, TV, Sain, B, Kafola, S, Nautiyal, BR, Sharma, YK, Nanoti, SM, Garg, MO 2007 Energy Fuels 21:3420–3424 .
10. Sharipov, AKh 1997 Chem Techol Fuels Oils 33:125–137 .
11. Shefer, N, Rozen, S 2010 J Org Chem 75:4623–4625 .
12. Sharma, A, Singh, B, Saxena, A 2009 Carbon 47:1911–1915 .
13. Sahle-Demessie, E, Devulapelli, V 2008 Appl Catal B Environ 84:408–419 .
14. Ricoux, R Allard Dubuc, M, Dupont, C, Marechal, JD, Mahy, JP 2009 Org Biomol Chem 7:3208–3211 .
15. Franke, A, Fertinger, C R Van Eldik 2008 Angew Chem Int Ed 47:5238–5242 .
16. Gokel, GW, Gerdes, HM, Dishong, DM 1980 J Org Chem 45:3634–3639 .
17. Shaabani, A, Behnam, M, Rezayan, AH 2009 Catal Commun 10:1074–1078 .
18. Xu, L, Cheng, J, Trudell, ML 2003 J Org Chem 68:5388–5391 .
19. Paybarah, A, Bone, RL, Corcoran, WH 1982 Ind Eng Chem Process Des Dev 21:426–431 .
20. Kubota, A, Takeuchi, H 2004 Org Process Res Dev 8:1076–1078 .
21. Kluge, R, Schulz, M, Liebsch, S 1996 Tetrahedron 52:5773–5782 .
22. Hudlicky M (1990) Oxidations in organic chemistry, ACS monograph 186. ACS, Washington DC, pp 252–259.
23. Mashkina, AV 1990 Catal Rev Sci Eng 32:105–161 .
24. Choudary, BM, Reddy, CV, Prakash, BV, Kantam, ML, Sreedhar, B 2003 Chem Commun 6:754–755 .
25. Lee, HB, Ren, T 2009 Inorg Chim Acta 362:1467–1470 .
26. Rao, TV, Sain, B, Kumar, K, Murthy, PS, Prasada Rao, TSR, Joshi, GC 1998 Synth Commun 28:319–326 .
27. Liu, F, Fu, Z, Liu, Y, Lu, C, Wu, Y, Xie, F, Ye, Z, Zhou, X, Yin, D 2010 Ind Eng Chem Res 49:2533–2536 .
28. Raju, BR, Sarkar, S, Reddy, UC, Saikia, AK 2009 J Mol Catal A Chem 308:169–173 .
29. Yang, C, Jin, Q, Zhang, H, Liao, J, Zhu, J, Yu, B, Deng, J 2009 Green Chem 11:1401–1405 .
30. Al-Maksoud, W, Daniele, S, Sorokin, AB 2008 Green Chem 10:447–451 .
31. Jeyakumar, K, Chakravarthy, RD, Chand, DK 2009 Catal Commun 10:1948–1951 .
32. Noyori, R, Aoki, M, Sato, K 2003 Chem Commun 16:1977–1986 .
33. Kirihara, M, Yamamoto, J, Noguchi, T, Hirai, Y 2009 Tetrahedron Lett 50:1180–1183 .
34. Lindsay Smith, JR, Murray, J, Walton, PH, Lowdon, TR 2006 Tetrahedron Lett 47:2005–2008 .
35. Bahrami, K 2006 Tetrahedron Lett 47:2009–2012 .
36. Yamazaki, S 1996 Bull Chem Soc Jpn 69:2955–2959 .
37. Palermo, V, Sathicq, AG, Vazquez, PG, Thomas, HJ, Romanelli, GP 2011 React Kinet Mech Cat 104:181–195 .
38. Golchoubian, H, Hosseinpoor, F 2007 Molecules 12:304–311 .
39. Maggi, R, Chitsaz, S, Loebbecke, S, Piscopo, CG, Sartori, G, Schwarzer, M 2011 Green Chem 13:1121–1123 .
40. Greenspan, FP 1946 J Am Chem Soc 68 5 907 .
41. John, JA, Weymouth, FJ 1962 Chem Ind 2:62–69.
42. Ukkirapandian, V, Sadasivam, V, Sivasankar, B 2008 Pet Sci Technol 26:423–435 .
43. Yazu, K, Makino, M, Ukegawa, K 2004 Chem Lett 33:1306–1307 .
44. Palani, A, Pandurangan, A 2006 Catal Commun 7:875–878 .
45. Saha, MS, Nishiki, Y, Furuta, T, Denggerile, A, Ohsaka, T 2003 Tetrahedron Lett 44:5535–5537 .
46. Zhao, X, Zhang, T, Zhou, Y, Liu, D 2007 J Mol Catal A Chem 271:246–252 .
47. Fortnum, DH, Battaglia, CJ, Cohen, SR, Edwards, JO 1960 J Am Chem Soc 82:778–782 .
48. Furia, FDi, Modena, G 1982 Pure Appl Chem 54 10 1853–1866 .