Brookite titania nanomaterials modified with gold nanoparticles (NPs) Au–TiO2 were prepared in this research. The photocatalytic activity of the prepared composite was assessed by the photodegradation of organic pollutants. Rhodamine blue was used as a model organic pollutant. The study determined the optimum loading ratio of Au/Ti, which will result in the best photodegradation efficiency. Also, the photocatalytic activity of gold loaded brookite titania nanomaterials was ascertained under visible light. The hydrothermal method was used to prepare brookite titania whiles, gold NPs were loaded on its surface by consecutive ion adsorption and photoreduction. The results revealed that the sample Au–TiO2 (Au/Ti = 2 % molar ratio) had the best photocatalytic degradation efficiency of 100 % after 2 h of irradiation under visible light and was also higher than commercial P25.
1. Arabatzis, IM, Stergiopoulos, T, Andreeva, D, Kitova, S, Neophytides, SG, Falaras, P 2003 Characterisation and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation. J Catal 220:127–135 .
2. Cheng, B, Le, Y, Yu, J 2010 Preparation and enhanced photocatalytic activity of Ag@TiO2 core–shell nanocomposite nanowires. J Hazard Mater 177:971–977 .
3. Liu, Y, Chen, L, Hu, J, Li, J, Richards, R 2010 TiO2 nanoflakes modified with gold nanoparticles as photocatalysts with high activity and durability under near UV irradiation. J Phys Chem C 114:1641–1645 .
4. Kafizas, A, Kellici, S, Darr, JA, Parkin, IP 2009 Titanium dioxide and composite metal/metal oxide titania thin films on glass: a comparative study of photocatalytic activity. J Photochem Photobiol A 204:183–190 .
5. Wu, Y, Zhang, J, Xiao, L, Chen, F 2009 Preparation and characterisation of TiO2 photocatalysts by Fe3+ doping together with Au deposition for the degradation of organic pollutants. Appl Catal B 88:525–532 .
6. Zhu, J, Xie, J, Chen, M, Jiang, D 2010 Low temperature preparation and visible light induced photocatalytic activity of Europium doped hydrophobic anatase TiO2–SiO2 photocatalysts. J Nanosci Nanotechnol 10:1–4 .
7. Addamo, M, Augugliaro, V MBA Di Paola Loddo, V, Palmisano, G, Palmisano, L, Yurdakal, S 2008 Environmentally friendly photocatalytic oxidation of aromatic alcohol to aldehyde in aqueous suspension of brookite TiO2. Catal Lett 126:58–62 .
8. Xie, J, Xiaomeng, L, Jun, L, Huoming, S 2009 Synthesis and photocatalytic activity of brookite titania. Pure Appl Chem 81:2407–2415 .
9. Hu, W, Li, L, Li, G, Tang, C, Sun, L 2009 High-quality brookite TiO2 flowers: synthesis, characterization, and dielectric performance. Cryst Growth Design 9:3676–3682 .
10. Beltran, A, Gracia, L, Andres, J 2006 Density functional theory study of the brookite surfaces and phase transitions between natural titania polymorphs. J Phys Chem B 110:23417–23423 .
11. Alvaro, M, Cojocaru, B, Ismail, AA, Petrea, N, Ferrer, B, Harraz, FA, Parvulescu, VI, Garcia, H 2010 Visible-light photocatalytic activity of gold nanoparticles supported on template-synthesized mesoporous titania for the decontamination of the chemical warfare agent Soman. Appl Catal B 99:191–197 .
12. Yang, JH, Henao, JD, Raphulu, MC, Wang, YM, Caputo, T, Groszek, AJ, Kung, MC, Scurrell, MS, Miller, JT, Kung, HH 2005 Activation of Au/TiO2 catalyst for CO oxidation. J Phys Chem B 109:10319–10326 .
13. Xie Y , Ding K, Liu Z, Tao R, Sun Z, Zhang H, An G (2009) In situ controllable loading of ultrafine noble metal particles on titania. J Am Chem Soc 131: 6648–6649.
14. Colmenares, JC, Aramenda, MA, Marinas, A, Marinas, JM, Urbano, FJ 2006 Synthesis, characterization and photocatalytic activity of different metal-doped titania systems. Appl Catal A 306:120–127 .
15. Wang, X, Mitchell, DRG, Kathryn, P, Atanacio, AJ, Caruso, RA 2008 Gold nanoparticle incorporation into porous titania networks using an agarose gel templating technique for photocatalytic applications. Chem Mater 20:3917–3926 .
16. Zielinska-Jurek, A, Kowalska, E, Sobczak, JW, Lisowski, W, Ohtani, B, Zaleska, A 2011 Preparation and characterisation of monometallic (Au) and bimetallic (Ag/Au) modified-titania photocatalysts activated by visible light. J Appl Catal B 101:504–514 .
17. Rodrıguez-Gonzalez, V, Zanella, R, Angel, GD, Gomez, R 2008 MTBE visible-light photocatalytic decomposition over Au/TiO2 and Au/TiO2–Al2O3 sol–gel prepared catalysts. J Mol Catal A 281:93–98 .
18. Sangpour, P, Hashemi, F, Moshfegh, AZ 2010 Photoenhanced degradation of methylene blue on cosputtered M: TiO2(M = Au, Ag, Cu) nanocomposite systems: a comparative study. J Phys Chem C 114:13955–13961 .
19. Yu, H, Wang, X, Sun, H, Huo, M 2010 Photocatalytic degradation of Malathion in aqueous solution using an Au–Pd–TiO2 nanotube film. J Hazard Mater 184:753–758 .
20. Wang, Y, Li, S, Xing, X, Huang, F, Shen, Y, Xie, A, Wang, X, Zhang, J 2011 Self-assembled 3D flowerlike hierarchical Fe3O4 @Bi2O3 core-shell architectures and their enhanced photocatalytic activity under visible light. Chem Eur 12:4802–4808 .
21. Zhao, Q, Li, M, Chu, J, Jiang, T, Yin, H 2009 Preparation, characterisation of Au (or Pt)-loaded titania nanotubes and their photocatalytic activities for degradation of methyl orange. J Appl Surf Sci 255:3773–3778 .
22. Maicu, M, Hidalgo, MC, Colon, G, Navio, JA 2011 Comparative study of the photodeposition of Pt, Au and Pd on pre-sulphated TiO2 for the photocatalytic decomposition of phenol. J Photochem Photobiol A 217:275–283 .
23. Link, S, El-Sayed, MA 1999 Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:8410–8426 .
24. Chih-Chieh, C, Chung-Chieh, C, Wen-Chia, H, Shih-Kai, W, Lin, J 2009 Photocatalytic activities of Pd-loaded mesoporous TiO2 thin films. Chem Eng J 152:492–497 .
25. Xie, J, Xiaomeng, L, Chen, M, Zhao, G, Song, Y, Lu, S 2008 The synthesis, characterisation and photocatalytic activity of V(v), Pb(II), Ag(I), Co(II)-doped Bi2O3. Dyes Pigments 77:43–47 .
26. Yamashita, H, Harada, M, Misaka, J, Takeuchi, M, Neppolian, B, Anpo, M 2003 Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2. Catal T 84:191–196 .
27. Selvam, K, Swaminathan, M 2011 One-pot photocatalytic synthesis of quinaldines from nitroarenes with Au loaded TiO2 nanoparticles. Catal Commun 12:389–393 .
28. Shao-Wen, C, Yin, Z, Barber, J, Boey, FYC, Loo, SCJ, Xue, C 2012 Preparation of Au-BiVO4 heterogeneous nanostructures as highly efficient visible-light photocatalysts. Appl Mater Interf 4:418–423 .
29. Kielbassa, S, Kinne, M, Behm, RJ 2004 Thermal stability of Au nanoparticles in O2 and air on fully oxidized TiO2 (110) substrates at elevated pressures. An AFM/XPS study of Au/TiO2 model systems. J Phys Chem B 108:19184–19190 .
30. Shin-Tae, B, Shin, H, Lee, S, Kim, DW, Jung, HS, Hong, KS 2012 Visible-light photocatalytic activity of NH3-heat-treated Ta2O5 to decompose rhodamine B in aqueous solution. Reac Kinet Mech Cat 106:67–81 .