Authors:
Prince Osei Bonsu School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China, xiejm391@sohu.com
School of Environment, Jiangsu University, Zhenjiang 212013, China

Search for other papers by Prince Osei Bonsu in
Current site
Google Scholar
PubMed
Close
,
Xiaomeng Lü School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China, xiejm391@sohu.com

Search for other papers by Xiaomeng Lü in
Current site
Google Scholar
PubMed
Close
,
Jimin Xie School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China, xiejm391@sohu.com

Search for other papers by Jimin Xie in
Current site
Google Scholar
PubMed
Close
,
Deli Jiang School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China, xiejm391@sohu.com

Search for other papers by Deli Jiang in
Current site
Google Scholar
PubMed
Close
,
Min Chen School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China, xiejm391@sohu.com

Search for other papers by Min Chen in
Current site
Google Scholar
PubMed
Close
, and
Xiaojun Wei School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China, xiejm391@sohu.com

Search for other papers by Xiaojun Wei in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Brookite titania nanomaterials modified with gold nanoparticles (NPs) Au–TiO2 were prepared in this research. The photocatalytic activity of the prepared composite was assessed by the photodegradation of organic pollutants. Rhodamine blue was used as a model organic pollutant. The study determined the optimum loading ratio of Au/Ti, which will result in the best photodegradation efficiency. Also, the photocatalytic activity of gold loaded brookite titania nanomaterials was ascertained under visible light. The hydrothermal method was used to prepare brookite titania whiles, gold NPs were loaded on its surface by consecutive ion adsorption and photoreduction. The results revealed that the sample Au–TiO2 (Au/Ti = 2 % molar ratio) had the best photocatalytic degradation efficiency of 100 % after 2 h of irradiation under visible light and was also higher than commercial P25.

  • 1. Arabatzis, IM, Stergiopoulos, T, Andreeva, D, Kitova, S, Neophytides, SG, Falaras, P 2003 Characterisation and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation. J Catal 220:127135 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Cheng, B, Le, Y, Yu, J 2010 Preparation and enhanced photocatalytic activity of Ag@TiO2 core–shell nanocomposite nanowires. J Hazard Mater 177:971977 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Liu, Y, Chen, L, Hu, J, Li, J, Richards, R 2010 TiO2 nanoflakes modified with gold nanoparticles as photocatalysts with high activity and durability under near UV irradiation. J Phys Chem C 114:16411645 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Kafizas, A, Kellici, S, Darr, JA, Parkin, IP 2009 Titanium dioxide and composite metal/metal oxide titania thin films on glass: a comparative study of photocatalytic activity. J Photochem Photobiol A 204:183190 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Wu, Y, Zhang, J, Xiao, L, Chen, F 2009 Preparation and characterisation of TiO2 photocatalysts by Fe3+ doping together with Au deposition for the degradation of organic pollutants. Appl Catal B 88:525532 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Zhu, J, Xie, J, Chen, M, Jiang, D 2010 Low temperature preparation and visible light induced photocatalytic activity of Europium doped hydrophobic anatase TiO2–SiO2 photocatalysts. J Nanosci Nanotechnol 10:14 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Addamo, M, Augugliaro, V MBA Di Paola Loddo, V, Palmisano, G, Palmisano, L, Yurdakal, S 2008 Environmentally friendly photocatalytic oxidation of aromatic alcohol to aldehyde in aqueous suspension of brookite TiO2. Catal Lett 126:5862 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Xie, J, Xiaomeng, L, Jun, L, Huoming, S 2009 Synthesis and photocatalytic activity of brookite titania. Pure Appl Chem 81:24072415 .

  • 9. Hu, W, Li, L, Li, G, Tang, C, Sun, L 2009 High-quality brookite TiO2 flowers: synthesis, characterization, and dielectric performance. Cryst Growth Design 9:36763682 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Beltran, A, Gracia, L, Andres, J 2006 Density functional theory study of the brookite surfaces and phase transitions between natural titania polymorphs. J Phys Chem B 110:2341723423 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Alvaro, M, Cojocaru, B, Ismail, AA, Petrea, N, Ferrer, B, Harraz, FA, Parvulescu, VI, Garcia, H 2010 Visible-light photocatalytic activity of gold nanoparticles supported on template-synthesized mesoporous titania for the decontamination of the chemical warfare agent Soman. Appl Catal B 99:191197 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Yang, JH, Henao, JD, Raphulu, MC, Wang, YM, Caputo, T, Groszek, AJ, Kung, MC, Scurrell, MS, Miller, JT, Kung, HH 2005 Activation of Au/TiO2 catalyst for CO oxidation. J Phys Chem B 109:1031910326 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Xie Y , Ding K, Liu Z, Tao R, Sun Z, Zhang H, An G (2009) In situ controllable loading of ultrafine noble metal particles on titania. J Am Chem Soc 131: 66486649.

    • Search Google Scholar
    • Export Citation
  • 14. Colmenares, JC, Aramenda, MA, Marinas, A, Marinas, JM, Urbano, FJ 2006 Synthesis, characterization and photocatalytic activity of different metal-doped titania systems. Appl Catal A 306:120127 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Wang, X, Mitchell, DRG, Kathryn, P, Atanacio, AJ, Caruso, RA 2008 Gold nanoparticle incorporation into porous titania networks using an agarose gel templating technique for photocatalytic applications. Chem Mater 20:39173926 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Zielinska-Jurek, A, Kowalska, E, Sobczak, JW, Lisowski, W, Ohtani, B, Zaleska, A 2011 Preparation and characterisation of monometallic (Au) and bimetallic (Ag/Au) modified-titania photocatalysts activated by visible light. J Appl Catal B 101:504514 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Rodrıguez-Gonzalez, V, Zanella, R, Angel, GD, Gomez, R 2008 MTBE visible-light photocatalytic decomposition over Au/TiO2 and Au/TiO2–Al2O3 sol–gel prepared catalysts. J Mol Catal A 281:9398 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18. Sangpour, P, Hashemi, F, Moshfegh, AZ 2010 Photoenhanced degradation of methylene blue on cosputtered M: TiO2(M = Au, Ag, Cu) nanocomposite systems: a comparative study. J Phys Chem C 114:1395513961 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Yu, H, Wang, X, Sun, H, Huo, M 2010 Photocatalytic degradation of Malathion in aqueous solution using an Au–Pd–TiO2 nanotube film. J Hazard Mater 184:753758 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Wang, Y, Li, S, Xing, X, Huang, F, Shen, Y, Xie, A, Wang, X, Zhang, J 2011 Self-assembled 3D flowerlike hierarchical Fe3O4 @Bi2O3 core-shell architectures and their enhanced photocatalytic activity under visible light. Chem Eur 12:48024808 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Zhao, Q, Li, M, Chu, J, Jiang, T, Yin, H 2009 Preparation, characterisation of Au (or Pt)-loaded titania nanotubes and their photocatalytic activities for degradation of methyl orange. J Appl Surf Sci 255:37733778 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Maicu, M, Hidalgo, MC, Colon, G, Navio, JA 2011 Comparative study of the photodeposition of Pt, Au and Pd on pre-sulphated TiO2 for the photocatalytic decomposition of phenol. J Photochem Photobiol A 217:275283 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Link, S, El-Sayed, MA 1999 Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:84108426 .

  • 24. Chih-Chieh, C, Chung-Chieh, C, Wen-Chia, H, Shih-Kai, W, Lin, J 2009 Photocatalytic activities of Pd-loaded mesoporous TiO2 thin films. Chem Eng J 152:492497 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Xie, J, Xiaomeng, L, Chen, M, Zhao, G, Song, Y, Lu, S 2008 The synthesis, characterisation and photocatalytic activity of V(v), Pb(II), Ag(I), Co(II)-doped Bi2O3. Dyes Pigments 77:4347 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Yamashita, H, Harada, M, Misaka, J, Takeuchi, M, Neppolian, B, Anpo, M 2003 Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2. Catal T 84:191196 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Selvam, K, Swaminathan, M 2011 One-pot photocatalytic synthesis of quinaldines from nitroarenes with Au loaded TiO2 nanoparticles. Catal Commun 12:389393 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Shao-Wen, C, Yin, Z, Barber, J, Boey, FYC, Loo, SCJ, Xue, C 2012 Preparation of Au-BiVO4 heterogeneous nanostructures as highly efficient visible-light photocatalysts. Appl Mater Interf 4:418423 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29. Kielbassa, S, Kinne, M, Behm, RJ 2004 Thermal stability of Au nanoparticles in O2 and air on fully oxidized TiO2 (110) substrates at elevated pressures. An AFM/XPS study of Au/TiO2 model systems. J Phys Chem B 108:1918419190 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Shin-Tae, B, Shin, H, Lee, S, Kim, DW, Jung, HS, Hong, KS 2012 Visible-light photocatalytic activity of NH3-heat-treated Ta2O5 to decompose rhodamine B in aqueous solution. Reac Kinet Mech Cat 106:6781 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

To see the editorial board, please visit the website of Springer Nature.

Manuscript submission: www.editorialmanager.com/reac

For subscription options, please visit the website of Springer Nature.

Reaction Kinetics, Mechanisms and Catalysis
Language English
Size B5
Year of
Foundation
1974
Volumes
per Year
1
Issues
per Year
6
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 1878-5190 (Print)
ISSN 1878-5204 (Online)