Author: L. Egghe
View More View Less
  • 1 LUC Universitaire Campus B-3590 Diepenbeeks (Belgium) Universitaire Campus B-3590 Diepenbeeks (Belgium)
  • | 2 UIA Universiteitsplein 1 B-2610 Wilrijk (Belgium) Universiteitsplein 1 B-2610 Wilrijk (Belgium)
Restricted access

Abstract  

The present paper studies fractal features (such as the fractal dimension) of hypertext systems (such as WWW) and establishes the link with informetric parameters. More concretely, a formula for the fractal dimension in function of the average number of hyperlinks per page is presented and examples are calculated. In general the complexity of these systems is high. This is also expressed by formulae for the total number of hypertext systems that are possible, given a fixed number of documents.

Manuscript submission: http://www.editorialmanager.com/scim/

  • Impact Factor (2019): 2.867
  • Scimago Journal Rank (2019): 1.210
  • SJR Hirsch-Index (2019): 106
  • SJR Quartile Score (2019): Q1 Computer Science Apllications
  • SJR Quartile Score (2019): Q1 Library and Information Sciences
  • SJR Quartile Score (2019): Q1 Social Sciences (miscellaneous)
  • Impact Factor (2018): 2.770
  • Scimago Journal Rank (2018): 1.113
  • SJR Hirsch-Index (2018): 95
  • SJR Quartile Score (2018): Q1 Library and Information Sciences
  • SJR Quartile Score (2018): Q1 Social Sciences (miscellaneous)

For subscription options, please visit the website of Springer

Scientometrics
Language English
Size B5
Year of
Foundation
1978
Volumes
per Year
4
Issues
per Year
12
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0138-9130 (Print)
ISSN 1588-2861 (Online)