Knowledge diffusion is the adaptation of knowledge in a broad range of scientific and engineering research and development. Tracing knowledge diffusion between science and technology is a challenging issue due to the complexity of identifying emerging patterns in a diverse range of possible processes. In this article, we describe an approach that combines complex network theory, network visualization, and patent citation analysis in order to improve the means for the study of knowledge diffusion. In particular, we analyze patent citations in the field of tissue engineering. We emphasize that this is the beginning of a longer-term endeavor that aims to develop and deploy effective, progressive, and explanatory visualization techniques for us to capture the dynamics of the evolution of patent citation networks. The work has practical implications on resource allocation, strategic planning, and science policy.
1. Oppenheimer, C., Do patent citations count?, in: The Web of Knowledge: A Festschrift in Honor of Eugene Garfield, Cronin, B., Atkins, H. B. (Eds), ASIS, 2000, pp. 405–432.
2. Crane, D. 1972 Invisible Colleges: Diffusion of Knowledge in Scientific Communities University of Chicago Press Chicago, Illinois.
3. Chen, C. Kuljis, J. 2003 The rising landscape: A visual exploration of superstring revolutions in physics Journal of the American Society for Information Science and Technology 54 435–446.
4. Chen, C. 2002 Mapping Scientific Frontiers: The Quest for Knowledge Visualization Springer-Verlag London.
5. Chen, C. Cribbin, T. Macredie, R. Morar, S. 2002 Visualizing and tracking the growth of competing paradigms: Two case studies Journal of the American Society for Information Science and Technology 53 678–689.
6. Chen, C. Kuljis, J. Paul, R. J. 2001 Visualizing latent domain knowledge IEEE Transactions on Systems, Man, and Cybernetics 31 518–529.
7. Chen, C. Paul, R. J. 2001 Visualizing a knowledge domain's intellectual structure Computer 34 65–71.
8. Small, H. 1999 A passage through science: Crossing disciplinary boundaries Library Trends 48 72–108.
9. Chen, C. 1999 Visualising semantic spaces and author co-citation networks in digital libraries Information Processing and Management 35 401–420.
10. Boyack, K. W. Wylie, B. N. Davidson, G. S. 2002 Domain visualization using VxInsight for science and technology management Journal of the American Society for Information Science andTechnology 53 764–774.
11. Braam, R. R. Moed, H. F. Raan, A. F. J. V. 1991 Mapping of science by combined co-citation and word analysis. I: Structural aspects Journal of the American Society for Information Science 42 233–251.
12. Steinberg, S. G. 1994 The ontogeny of RISC Intertek 3 1–10.
13. Tijssen, R. J. W. Raan, A. F. J. V. 1994 Mapping changes in science and technology: Bibliometric co-occurrence analysis of the R&D literature Evaluation Review 18 98–115.
14. Ding, Y. Chowdhury, G. Foo, S. 2000 Mapping the intellectual structure of information retrieval studies: an author co-citation analysis, 1987–1997 Journal of Information Science 25 67–78.
15. Noyons, E. 2001 Bibliometric mapping of science in a science policy context Scientometrics 50 83–98.
16. Carpenter, M. P. Cooper, M. Narin, F. 1980 Linkage between basic research literature and patents Research Management 23 30–35.
17. Narin, F. Olivastro, D. 1992 Linkage between technology and science Research Policy 21 237–249.
18. Narin, F. Hamilton, K. S. Olivastro, D. 1997 The increasing linkage between U.S. technology and public science Research Policy 26 317–330.
19. Hicks, D. Breitzman, T. Olivastro, D. Hamilton, K. 2001 The changing composition of innovative activity in the U.S.: A portrait based on patent analysis Research Policy 30 681–703.
20. Meyer, M. 2001 Patent citation analysis in a novel field of technology Scientometrics 51 163–183.
21. Al-Thubaity, A., Ahmad, K., Tracking knowledge of emergent domains, presented at IEEE International Conference on Information Visualisation, London, 2002.
22. Watts, D. J. Strogatz, S. J. 1998 Collective dynamics of ‘small-world' networks Nature 393 440–442.
23. BarabÁsi, A.-L. Albert, R. Jeong, H. 2000 Scale-free characteristics of random networks: The topology of the world-wide web Physica A 281 69–77.
24. BarabÁsi, A. L. Jeong, H. NÉda, Z. Ravasz, E. Schubert, A. Vicsek, T. 2002 Evolution of the social network of scientific collaborations Physica A 311 590–614.
25. Albert, R. Barabasi, A. 2002 Statistical mechanics of complex networks Reviews of Modern Physics 74 47–97.
26. Dorogovtsev, S. N. Mendes, J. F. F. 2002 Evolution of networks Advances in Physics 51 1079–1187.
27. Callan, C. G. Thorlacius, L. 1998 World-sheet dynamics of string junctions Nuclear Physics B 534 121–136.
28. Price, D. D. 1965 Networks of scientific papers Science 149 510–515.
29. Small, H. G. Griffith, B. C. 1974 The structure of scientific literatures. I: Identifying and graphing specialties Science Studies 4 17–40.
30. Small, H. G. 1977 A co-citation model of a scientific specialty: A longitudinal study of collagen research Social Studies of Science 7 139–166.
31. Hummon, N. P. Doreian, P. 1989 Connectivity in a citation network: The development of DNA theory Social Networks 11 39–63.
32. Skalak, R. Fox, C. F. 1988 Tissue Engineering A Workshop on Tissue Engineering Alan Liss Granlibakken, Lake Tahoe, CA: New York.
33. Langer, R. Vancanti, J. P. 1993 Tissue engineering Science 260 920–926.
34. McIntire, L. V. Greisler, H. P. Griffith, L. Johnson, P. C. Mooney, D. J. Mrksich, M. Parenteau, N. L. Smith, D. 2002 Tissue engineering research: A WTEC Panel Report World Technology (WTEC) Panel Report International Technology Research Institute Baltimore, Maryland.