The aggregated journal-journal citation matrix of the Journal Citation Report 2001of the Social Science Citation Indexis analyzed as a single domain in terms of both its eigenvectors and the bi-connected components contained in it. The traditional disciplines (e.g., economics, psychology, or political science) can be retrieved using both methods. These main disciplines do interact marginally. The space between them is occupied by a large number of small clusters of journals indicating specialties that gravitate among the major disciplines. These specialties operate in a mode different from that of the disciplines. For example, the impact factors are low on average and the developments remain volatile. Factor analysis enables us to study how the smaller bi-connected components are related to the larger ones. Factor analysis also highlights methodological differences among groups which may be theoretically connected in a single bi-component.
Ahlgren, P. Jarneving, B. Rousseau, R. 2003 Requirement for a cocitation similarity measure, with special reference to Pearson.s correlation coefficient Journal of the American Society for Information Science and Technology 54 6 550–560.
Borgatti, S. P. Everett, M. G. Freeman, L. C. 2002 Ucinet for Windows: Software for Social Network Analysis Analytic Technologies Harvard.
Burt, R. S. 1982 Toward a Structural Theory of Action Academic Press New York.
Carpenter, M. P. Narin, F. 1973 Clustering of scientific journals Journal of the American Society of Information Science 24 425–436.
Doreian, P. Fararo, T. J. 1985 Structural equivalence in a journal network Journal of the American Society of Information Science 36 28–37.
Fruchterman, T. Reingold, E. 1991 Graph drawing by force-directed replacement Software—Practice and Experience 21 1129–1166.
Gibbons, M. Limoges, C. Nowotny, H. Schwartzman, S. Scott, P. Trow, M. 1994 The New Production of Knowledge: The Dynamics of Science and Research in Contemporary Societies Sage London.
Kamada, T. Kawai, S. 1989 An algorithm for drawing general undirected graphs Information Processing Letters 31 1 7–15.
Knaster, B. Kuratwoski, C. 1921 Sur les ensembles connexes Fund. Math. 2 206–255.
Kuhn, T. S. 1962 The Structure of Scientific Revolutions University of Chicago Press Chicago.
Kuhn, T. S. 1977 The Essential Tension: Selected Studies in Scientific Tradition and Change Chicago University Press Chicago.
Leydesdorff, L. 1987 Various methods for the mapping of science Scientometrics 11 291–320.
Leydesdorff, L. 1995 The Challenge of Scientometrics: The Development, Measurement, and Self-Organization of Scientific Communications DSWO / Leiden University Leiden.
Leydesdorff, L. 2001 A Sociological Theory of Communication: The Self-Organization of the Knowledge-Based Society Universal Publishers Parkland, FL.
Leydesdorff, L. 2002 Dynamic and evolutionary updates of classificatory schemes in scientific journal structures Journal of the American Society for Information Science and Technology 53 12 987–994.
Leydesdorff, L. 2003 Can networks of journal-journal citations be used as indicators of change in the social sciences? Journal of Documentation 59 1 84–104.
Leydesdorff, L. 2003 The construction and globalization of the knowledge base in inter-human communication systems Canadian Journal of Communication 28 3 1–23.
Leydesdorff, L. (2004), Clusters and maps of science journals based on bi-connected graphs in the Journal Citation Reports Journal of Documentation, 60(4), forthcoming).
Leydesdorff, L. Zaal, R. 1988 Co-words and citations. Relations between document sets and environments Egghe, L. Rousseau, R. (eds.) Informetrics 87/88 Elsevier Amsterdam 105–119.
Leydesdorff, L. Cozzens, S. E. 1993 The delineation of specialties in terms of journals using the dynamic journal set of the Science Citation Index Scientometrics 26 133–154.
Leydesdorff, L. Besselaar, P. V. D. 1997 Scientometrics and communication theory: Towards theoretically informed indicators Scientometrics 38 155–174.
Moody, J. White, D. R. 2003 Structural cohesion and embeddedness: A hierarchical concept of social groups American Sociological Review 68 1 103–127.
Mrvar, A., Bagatelj, V. (s.d.). Network Analysis Using Pajek; at http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/pajekman.htm. Retrieved April 5, 2003.
Narin, F. Carpenter, M. Berlt, N. C. 1972 Interrelationships of scientific journals Journal of the American Society for Information Science 23 323–331.
Otte, E. Rousseau, R. 2002 Social network analysis: A powerful strategy, also for the information sciences Journal of Information Science 28 6 443–455.
Pearl, J. 1988 Probabilistic Reasoning and Artificial Intelligence: Networks of Plausible Inference Morgan Kaufman San Mateo, CA.
de Solla Price, D. J. 1965 Networks of scientific papers Science 149 510–515.
Small, H. Sweeney, E. 1985 Clustering the Science Citation Index using co-citations I. A comparison of methods Scientometrics 7 391–409.
Tijssen, R. De Leeuw, J. van Raan, A. F. J. 1987 Quasi-correspondence analysis on square scientometric transaction matrices Scientometrics 11 347–361.
Van Den Besselaar, P. 2001 The cognitive and the social structure of science & technology studies Scientometrics 51 441–460.
Van Den Besselaar, P. Leydesdorff, L. 1996 Mapping change in scientific specialties: A scientometric reconstruction of the development of artificial intelligence Journal of the American Society for Information Science 47 415–436.
White, H. D. 2003 Author cocitation analysis and Pearson's r Journal of the American Society for Information Science and Technology 54 13 1250–1259.