View More View Less
  • 1 Swedish School of Library and Information Science 50190 Borås Sweden
Restricted access

Abstract  

This paper deals with two document-document similarity approaches in the context of science mapping: bibliographic coupling and a text approach based on the number of common abstract stems. We used 43 articles, published in the journal Information Retrieval, as test articles. An information retrieval expert performed a classification of these articles. We used the cosine measure for normalization, and the complete linkage method was used for clustering the articles. A number of articles pairs were ranked (1) according to descending normalized coupling strength, and (2) according to descending normalized frequency of common abstract stems. The degree of agreement between the two obtained rankings was low, as measured by Kendall’s tau. The agreement between the two cluster solutions, one for each approach, was fairly low, according to the adjusted Rand index. However, there were examples of perfect agreement between the coupling solution and the stems solution. The classification generated by the expert contained larger groups compared to the coupling and stems solutions, and the agreement between the two solutions and the classification was not high. According to the adjusted Rand index, though, the stems solution was a better approximation of the classification than the coupling solution. With respect to cluster quality, the overall Silhouette value was slightly higher for the stems solution. Examples of homogeneous cluster structures, as well as negative Silhouette values, were found with regard to both solutions. The expert classification indicates that the field of information retrieval, as represented by one volume of articles published in Information Retrieval, is fairly heterogeneous regarding research themes, since the classification is associated with 15 themes. The complete linkage method, in combination with the upper tail rule, gave rise to a fairly good approximation of the classification with respect to the number of identified groups, especially in case of the stems approach.

Manuscript submission: http://www.editorialmanager.com/scim/

  • Impact Factor (2019): 2.867
  • Scimago Journal Rank (2019): 1.210
  • SJR Hirsch-Index (2019): 106
  • SJR Quartile Score (2019): Q1 Computer Science Apllications
  • SJR Quartile Score (2019): Q1 Library and Information Sciences
  • SJR Quartile Score (2019): Q1 Social Sciences (miscellaneous)
  • Impact Factor (2018): 2.770
  • Scimago Journal Rank (2018): 1.113
  • SJR Hirsch-Index (2018): 95
  • SJR Quartile Score (2018): Q1 Library and Information Sciences
  • SJR Quartile Score (2018): Q1 Social Sciences (miscellaneous)

For subscription options, please visit the website of Springer

Scientometrics
Language English
Size B5
Year of
Foundation
1978
Volumes
per Year
4
Issues
per Year
12
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0138-9130 (Print)
ISSN 1588-2861 (Online)