View More View Less
  • 1 Department of Radio-Television-Film, The University of Texas, Austin, TX, USA sjchoi@mail.utexas.edu
  • | 2 Department of Media & Communication, YeungNam University, 214-1, Dae-dong, Gyeongsangbuk-do, Gyeongsan-si 712-749, South Korea
Restricted access

Cross Mark

Abstract

In order to explore new scientific and innovative communities, analyses based on a technological infrastructure and its related tools, for example, ‘Web of science’ database for Scientometric analysis, are necessary. However, there is little systematic documentation of social media data and webometric analysis in relation to Korean and broader Asian innovation communities. In this short communication, we present (1) webometric techniques to identify communication processes on the Internet, such as social media data collection and analysis using an API-based application; and (2) experimentation with new types of data visualization using NodeXL, such as social and semantic network analysis. Our research data is drawn from the social networking site, Twitter. We also examine the overlap between innovation communities in terms of their shared members, and then, (3) calculate entropy values for trilateral relationships.

  • Aguillo, IF, Ortega, JL, Fernández, M, Utrilla, AM 2010 Indicators for a webometric ranking of open access repositories. Scientometrics 82 3 477486 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barash, V., & Golder, S. (2010). Twitter: Conversation, entertainment, and information, All in one network Ch 10. In D. Hansen, B. Shneiderman & M. A. Smith. (eds.), Analyzing social media networks with NodeXL: Insights from a connected world. MA: Morgan Kaufmann.

    • Search Google Scholar
    • Export Citation
  • Björneborn, L, Ingwersen, P 2001 Perspective of webometrics. Scientometrics 50 1 6582 .

  • Burt, RS 2004 Structural holes and good ideas. American Journal of Sociology 110 2 349399 .

  • Doerfel, ML, Barnett, GA 1999 A semantic network analysis of the International Communication Association. Human Communication Research 25 4 589603 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Etzkowitz, H 2008 The Triple Helix: University–industry–government innovation in action Routledge New York .

  • Hansen, D, Shneiderman, B, Smith, MA 2010 Analyzing social media networks with NodeXL: Insights from a connected world Morgan Kaufmann MA.

  • Hansen, D., Smith, M. A., & Shneiderman, B. (2011). Event graphs: Charting collections of conference connections. A paper presented to the Hawaii International Conference on System Science, Hawaii.

    • Search Google Scholar
    • Export Citation
  • Holmberg, K 2010 Co-inlinking to a municipal web space: A webometric and content analysis. Scientometrics 83 3 851862 .

  • Hughes, AL, Palen, L 2010 Twitter adoption and use in mass convergence and emergency events. International Journal of Emergency Management 6 3–4 248260.

    • Search Google Scholar
    • Export Citation
  • Jansen, BJ, Zhang, M, Sobel, K, Chowdury, A 2009 Twitter power: Tweets as electronic word of mouth. Journal of the American Society for Information Science and Technology 60 11 21692188 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Java, A., Song, X., Finin, T., & Tseng, B. (2007). Why we twitter: Understanding microblogging usage and communities. Proceedings of the Joint 9th WEBKDD and 1st SNA-KDD Workshop 2007.

    • Search Google Scholar
    • Export Citation
  • Lang, P, Gouveia, FC, Leta, J 2010 Site co-link analysis applied to small networks: A new methodological approach. Scientometrics 83 1 157166 .

  • Leavitt, A, Burchard, E, Fisher, D, Gilbert, S 2009 The influentials: New approaches for analyzing influence on Twitter Web Ecology Project Cambridge.

    • Search Google Scholar
    • Export Citation
  • Lenhart, A, Fox, S 2009 Twitter and status updating Pew Internet & American Life Project Washington DC.

  • Leydesdorff, L 2003 The mutual information of university–industry–government relations: An indicator of the Triple Helix dynamics. Scientometrics 58 2 445467 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leydesdorff, L 2006 The knowledge-based economy: Modeled, measured, simulated Universal-Publishers Boca Raton.

  • Must, U 2006 “New”countries in Europe—Research, development and innovation strategies vs. bibliometric data. Scientometrics 66 2 241248 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, HW, Leydesdorff, L 2010 Longitudinal trends in networks of university–industry–government relations in South Korea: The role of programmatic incentives. Research Policy 39 5 640649 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramos-Vielba, I, Fernández-Esquinas, M, Espinosa-de-los-Monteros, E 2009 Measuring university–industry collaboration in a regional innovation system. Scientometrics 84 3 649667 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sams, S., Lim, Y. S., & Park, H. W. (2011 forthcoming). E-research applications for tracking online socio-political capital in the Asia-Pacific region. Asian Journal of Communication, 21 (3).

    • Search Google Scholar
    • Export Citation
  • Simmel, G 1971 The stranger DN Levine eds. Georg simmel: On individuality and social forms University of Chicago Press Chicago 143150.

  • Theil, H. (1972). Statistical decomposition analysis: With applications in the social and administrative sciences. Amsterdam: North-Holland.

    • Search Google Scholar
    • Export Citation
  • Thelwall, M. (2009). Introduction to webometrics: Quantitative web research for the social sciences. CA: Morgan & Claypool.

  • Yu, J., Russell, M. G., Still, K., Rubens, N., Huhtamäki, J., & Pöschko, J., (2011). Social media, reputation and branding of innovation hubs: A periscope using content analysis of Twitter. Presented at the Triple Helix IX Conference on July 14, 2011.

    • Search Google Scholar
    • Export Citation
  • Zabala-Iturriagagoitia, JM, Jimenez-Saez, F, Castro-Martinez, E, Gutierrez-Gracia, A 2007 What indicators do (or do not) tell us about regional innovation systems. Scientometrics 70 1 85106 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, D., & Rosson, M. B. (2009). How and why people Twitter: The role that micro-blogging plays in informal communication at work. Proceedings of the ACM 2009 international conference on supporting group.

    • Search Google Scholar
    • Export Citation