View More View Less
  • 1 LORIA, INRIA-TALARIS Project, 615 r. du Jardin Botanique, 54600, Villers-lès-Nancy, France
Restricted access

Abstract

The objective of this paper is to propose a new unsupervised incremental approach in order to follow the evolution of research themes for a given scientific discipline in terms of emergence or decline. Such behaviors are detectable by various methods of filtering. However, our choice is made on the exploitation of neural clustering methods in a multi-view context. This new approach makes it possible to take into account the incremental and chronological aspects of information by opening the way to the detection of convergences and divergences of research themes at a large scale.

  • Al Shehabi, S., Lamirel, J.-C. (2004). Inference Bayesian Network for Multi-topographic neural network communication: A case study in documentary data. In Proceedings of ICTTA, Damas, Syria, April 2004.

    • Search Google Scholar
    • Export Citation
  • Al Shehabi, S., Lamirel, J.-C. (2006). Evaluation of collaboration between European universities using dynamic interaction between multiple sources. Journal of Information Management and Scientometrics, 1 (3).

    • Search Google Scholar
    • Export Citation
  • Allan, J., Carbonell, J., Doddington, G., Yamron, J., Yang, Y. (1998). Topic detection and tracking pilot study, final report. In Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop, Lansdowne, Virginia.

    • Search Google Scholar
    • Export Citation
  • Attik, M., Lamirel, J.-C., Al Shehabi, S. (2006). Clustering analysis for data with multiple labels. In Proceedings of the The IASTED International Conference on Databases and Applications (DBA), Innsbruck, Austria, February 2006.

    • Search Google Scholar
    • Export Citation
  • Davies, D, Bouldin, W. A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence 1979 1:224227 .

  • Dempster, AP, Laird, NM, Rubin, DB. Maximum likelihood for incomplete data via the EM algorithm. Journal of the Royal Statistical Society 1977 B39:138.

    • Search Google Scholar
    • Export Citation
  • François, C., Hoffmann, M., Lamirel, J.-C., Polanco, X. (2003). Artificial Neural Network mapping experiments. EICSTES (IST-1999-20350) Final Report (WP 9.4), September 2003.

    • Search Google Scholar
    • Export Citation
  • Frizke, B. (1995). A growing neural gas network learns topologies. In G Tesauro, D. S. Touretzky, T. Kleen (eds.), Advances in neural Information processing Systems 7 (pp. 625632). Cambridge: MIT Press.

    • Search Google Scholar
    • Export Citation
  • Gaber, M., Zaslavsky, A., Krishnaswamy, S. (2005). Mining data streams: A review. SIGMOD Record, 34 (2).

  • Ghribi, M., Cuxac, P., Lamirel, J. C., Lelu, A. (2010). Mesures de qualité de clustering de documents: Prise en compte de la distribution des mots-clés. In EvalECD'2010 Workshop, Hamamet, Tunisia.

    • Search Google Scholar
    • Export Citation
  • Glanzel, W, Thijs, B. Using ‘core documents’ for the representation of clusters and topics. Scientometrics 2010 88 1 297309 .

  • Lamirel, J.-C., & Al Shehabi, S. (2004b). Comparison of unsupervised neural clustering methods for mining Web and textual data. In SCI 2004, Orlando, FL, USA, July 2004.

    • Search Google Scholar
    • Export Citation
  • Lamirel, J.-C., Créhange, M. (1994). Application of a symbolico-connectionist approach for the design of a highly interactive documentary database interrogation system with on-line learning capabilities. In Proceedings ACM-CIKM 94, Gaitherburg, MD, USA, November 1994.

    • Search Google Scholar
    • Export Citation
  • Lamirel, J-C, Al-Shehabi, S, François, C, Hoffmann, M. New classification quality estimators for analysis of documentary information: Application to patent analysis and web mapping. Scientometrics 2004 60 3 445462 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamirel, J.-C., Ta, A. P., & Attik M. (2008). Novel labeling strategies for hierarchical representation of multidimensional data analysis results. In IASTED International Conference on Artificial Intelligence and Applications (AIA), Innsbruck, Austria, February 2008.

    • Search Google Scholar
    • Export Citation
  • Lamirel, J.-C., Boulila, Z., Ghribi, M., Cuxac, P. (2010). A new incremental growing neural gas algorithm based on clusters labeling maximization: application to clustering of heterogeneous textual data. In Proceedings of IEA-AIE 2010, Cordoba, Spain, June 2010.

    • Search Google Scholar
    • Export Citation
  • Lamirel, J.-C., Mall, R., Cuxac, P., Safi, G. (2011). Variations to incremental growing neural gas algorithm based on label maximization. In Proceedings of IJCNN 2011, San José, CA, USA, August 2011.

    • Search Google Scholar
    • Export Citation
  • MacQueen, J. B. (1967). Some methods of classification and analysis of multivariate observations. In L. Le Cam & J. Neyman (eds.), Proceedings 5th Berkeley Symposium in Mathematics, Statistics and Probability (Vol 1, pp. 281297), University of California, Berkeley, USA, 1967.

    • Search Google Scholar
    • Export Citation
  • Results (2011). https://sites.google.com/site/diacresults2012.

  • Robertson, SE, Sparck Jones, K. Relevance weighting of search terms. Journal of the American Society for Information Science 1976 27:129146 .

  • Schiebel, E Hörlesberger Roche, I, François, C, Besagni, D. An advanced diffusion model to identify emergent research issues: The case of optoelectronic devices. Scientometrics 2010 83 3 765781 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thijs, B., Glänzel, W. (2010). A new hybrid approach for bibliometrics aided retrieval. In Sixth International Conference on Webometrics, Informetrics & Scientometrics, and 11th COLLNET Meeting, Mysore, India, October 2010.

    • Search Google Scholar
    • Export Citation
  • Voorhees, EM. Implementing agglomerative hierarchical clustering algorithms for use in document retrieval. Information Processing and Management 1986 22:465476 .

    • Crossref
    • Search Google Scholar
    • Export Citation

  • Impact Factor (2019): 2.867
  • Scimago Journal Rank (2019): 1.210
  • SJR Hirsch-Index (2019): 106
  • SJR Quartile Score (2019): Q1 Computer Science Apllications
  • SJR Quartile Score (2019): Q1 Library and Information Sciences
  • SJR Quartile Score (2019): Q1 Social Sciences (miscellaneous)
  • Impact Factor (2018): 2.770
  • Scimago Journal Rank (2018): 1.113
  • SJR Hirsch-Index (2018): 95
  • SJR Quartile Score (2018): Q1 Library and Information Sciences
  • SJR Quartile Score (2018): Q1 Social Sciences (miscellaneous)

Manuscript submission: http://www.editorialmanager.com/scim/