View More View Less
  • 1 II. sz. Gyermekgyógyászati Klinika, Semmelweis Egyetem, 1094, Budapest, Tűzoltó utca 7–9.
Restricted access

Absztrakt

Gyermekkori akut limfoid leukémiában a citogenetikai vizsgálat eredménye független prognosztikai tényező, különböző rizikócsoportokba történő besorolási szempont; a terápiás szerekkel szembeni érzékenységet vagy rezisztenciát is befolyásolhatja. Jelen tanulmányunkban 30 újonnan diagnosztizált vagy recidivált leukémiás gyermek G-sávos kariotípusát valamint a TEL/AML1 és az ABL/BCR fúziós gén, a p16 (9p21) tumorszuppresszor gén és az MLL gén interfázis-fluoreszcens in situ hibridizáció (I-FISH) vizsgálatát értékeljük. G-sávos kariotípus-analízissel az esetek felében találtunk klonális kromoszómaelváltozást. Az előbbi módszert I-FISH technikával kiegészítve, a betegek 70%-ában azonosítottunk kórjóslati szempontból jelentős számbeli vagy szerkezeti ALL-specifikus eltérést. Hét betegnél (19%) a hagyományos citogenetikai vizsgálat tárt fel olyan komplex szerkezeti eltérést, mely a célzott I-FISH vizsgálattal nem volt kimutatható. Az AML1 gén emelkedett kópiaszáma (30%) összhangban volt a G-sávval azonosított hiperdiploid kariotípusok 21-es kromoszómát érintő számbeli eltéréseivel. Egy betegnél az AML1 gén 5–6 kópiáját azonosítottuk, egy másiknál a der(21)-esen volt látható az AML1 gén amplifikációja, miközben a homológ kromoszóma AML1 génje a TEL/AML1 fúzióban vett részt. A gyermekkori B-sejtes ALL jó prognosztikai értékű rejtett transzlokációját, a t(12;21)(p13;q22)-et négy betegnél azonosítottuk, egynél a TEL gén deléciójával társult. Egy másik betegnél a TEL deléciója volt az egyedüli anomália. A 9p21 tumorszuppresszor régió mikrodelécióját 8 betegnél (23%) identifikáltuk, a G-sávos kariotípusban csak két betegnél volt detektálható a deléció. Egy betegnél a 9p21-deléció mellett Philadelphia kromoszómát és a 17-es kromoszóma monoszómiáját azonosítottuk. Az I-FISH és a hagyományos citogenetikai módszer együttes alkalmazása lehetőséget nyújt a citogenetikai kép részletesebb azonosítására, a gyermekkori leukémiák prognózisának pontosabb megítélésére és így az egyénre szabott és hatásosabb terápia kiválasztására.

  • 1. P Andreasson M Hoglund AN Bekassy et al. 2000 Cytogenetic and FISH studies of a single center consecutive series of 152 childhood acute lymphoblastic leukemias Eur J Haematol 65 40 51.

    • Search Google Scholar
    • Export Citation
  • 2. E Anguita FA Gonzalez J Lopez A Villegas 1997 TEL/AML1 transcript and p16 gene deletion in a patient with childhood acute lymphoblastic leukaemia Br J Haematol 99 240 241.

    • Search Google Scholar
    • Export Citation
  • 3. M Arico MG Valsecchi B Camitta et al. 2000 Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia N Engl J Med 342 998 1006.

    • Search Google Scholar
    • Export Citation
  • 4. JM Bennett D Catovsky MT Daniel et al. 1976 Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group Br J Haematol 33 451 458.

    • Search Google Scholar
    • Export Citation
  • 5. TM Calero Moreno G Gustafsson S Garwicz et al. 2002 Deletion of the Ink4-locus (the p16ink4a, p14ARF and p15ink4b genes) predicts relapse in children with ALL treated according to the Nordic protocols NOPHO-86 and NOPHO-92 Leukemia 16 2037 2045.

    • Search Google Scholar
    • Export Citation
  • 6. ZH Chen H Zhang TM Savarese 1996 Gene deletion chemoselectivity: codeletion of the genes for p16(INK4), methylthioadenosine phosphorylase, and the alpha- and beta-interferons in human pancreatic cell carcinoma lines and its implications for chemotherapy Cancer Res 56 1083 1090.

    • Search Google Scholar
    • Export Citation
  • 7. H Graf Einsiedel T Taube R Hartmann et al. 2001 Prognostic value of p16(INK4a) gene deletions in pediatric acute lymphoblastic leukemia Blood 97 4002 4004.

    • Search Google Scholar
    • Export Citation
  • 8. I Haltrich J Müller J Szabó et al. 2003 Donor cell myelodysplastic syndrome developing 13 years after marrow grafting for aplastic anemia Cancer Genet Cytogenet 142 124 128.

    • Search Google Scholar
    • Export Citation
  • 9. I Haltrich M Kost-Alimova G Fekete et al. 2007 Multipoint-FISH in childhood T-cell-lineage ALL detects subpopulations that carry 3q trisomies or deletions in the DUTT1/ROBO1 tumor suppressor gene region at 3p12-p13 Cancer Genet Cytogenet 172 54 60.

    • Search Google Scholar
    • Export Citation
  • 10. J Harbott S Viehmann A Borkhardt et al. 1997 Incidence of TEL/AML1 fusion gene analyzed consecutively in children with acute lymphoblastic leukemia in relapse Blood 90 4933 4937.

    • Search Google Scholar
    • Export Citation
  • 11. L Harewood H Robinson R Harris et al. 2003 Amplification of AML1 on a duplicated chromosome 21 in acute lymphoblastic leukemia: a study of 20 cases Leukemia 17 5475 5453.

    • Search Google Scholar
    • Export Citation
  • 12. MB Harris JJ Shuster A Carroll et al. 1992 Trisomy of leukemic cell chromosomes 4 and 10 identifies children with B-progenitor cell acute lymphoblastic leukemia with a very low risk of treatment failure: a Pediatric Oncology Group study Blood 79 3316 3324.

    • Search Google Scholar
    • Export Citation
  • 13. RL Harris CJ Harrison M Martineau et al. 2004 Is trisomy 5 a distinct cytogenetic subgroup in acute lymphoblastic leukemia? Cancer Genet Cytogenet 148 159 162.

    • Search Google Scholar
    • Export Citation
  • 14. NA Heerema HN Sather MG Sensel et al. 1999 Association of chromosome arm 9p abnormalities with adverse risk in childhood acute lymphoblastic leukemia: A report from the Children's Cancer Group Blood 94 1537 1544.

    • Search Google Scholar
    • Export Citation
  • 15. NA Heerema HN Sather MG Sensel et al. 2000 Prognostic impact of trisomies of chromosomes 10, 17, and 5 among children with acute lymphoblastic leukemia and high hyperdiploidy (>50 chromosomes) J Clin Oncol 18 1876 1887.

    • Search Google Scholar
    • Export Citation
  • 16. NA Heerema SC Raimondi JR Anderson et al. 2007 Specific extra chromosomes occur in a modal number dependent pattern in pediatric acute lymphoblastic leukemia Genes Chromosomes Cancer 46 684 693.

    • Search Google Scholar
    • Export Citation
  • 17. O Hrusak J Trka J Zuna et al. 1999 Are we ready to curtail testing for TEL/AML1 fusion? Pediatric Hematology Working Group in the Czech Republic Leukemia 13 981 983.

    • Search Google Scholar
    • Export Citation
  • 18. B Johansson F Mertens F Mitelman 1994 Secondary chromosomal abnormalities in acute leukemias Leukemia 8 953 962.

  • 19. R Krishna Narla C Navara M Sarquis FM Uckun 2001 Chemosensitivity of TEL-AML1 fusion transcript positive acute lymphoblastic leukemia cells Leuk Lymphoma 41 6156 6123.

    • Search Google Scholar
    • Export Citation
  • 20. ML Loh MA Goldwasser LB Silverman et al. 2006 Prospective analysis of TEL/AML1-positive patients treated on Dana-Farber Cancer Institute Consortium Protocol 95-01 Blood 107 4508 4513.

    • Search Google Scholar
    • Export Citation
  • 21. ML Loh JE Rubnitz 2002 TEL/AML1-positive pediatric leukemia: prognostic significance and therapeutic approaches Curr Opin Hematol 9 345 352.

    • Search Google Scholar
    • Export Citation
  • 22. TW McLean S Ringold D Neuberg et al. 1996 TEL/AML-1 dimerizes and is associated with a favorable outcome in childhood acute lymphoblastic leukemia Blood 88 4252 4258.

    • Search Google Scholar
    • Export Citation
  • 23. D Mirebeau C Acquaviva S Suciu et al. 2006 The prognostic significance of CDKN2A, CDKN2B and MTAP inactivation in B-lineage acute lymphoblastic leukemia of childhood. Results of the EORTC studies 58881 and 58951 Haematologica 91 881 885.

    • Search Google Scholar
    • Export Citation
  • 24. FM Mikhail KA Serry N Hatem et al. 2002 AML1 gene over-expression in childhood acute lymphoblastic leukemia Leukemia 16 658 668.

  • 25. ISCN. An international system for human cytogenetic nomenclature. Eds. Shaffer LG, Tommerup N. Karger S, Basel 2005.

  • 26. Mitelman Database of Chromosome Aberrations in Cancer. Eds. Mitelman F, Johansson B, Mertens F. “http://cgap.nci.nih.gov/Chromosomes/Mitelman”, 2007.

    • Search Google Scholar
    • Export Citation
  • 27. AV Moorman SM Richards M Martineau et al. 2003 Outcome heterogeneity in childhood high-hyperdiploid acute lymphoblastic leukemia Blood 102 2756 2762.

    • Search Google Scholar
    • Export Citation
  • 28. AV Moorman SM Richards HM Robinson et al. 2007 Prognosis of children with acute lymphoblastic leukemia (ALL) and intrachromosomal amplification of chromosome 21 (iAMP21) Blood 109 2327 2330.

    • Search Google Scholar
    • Export Citation
  • 29. SI Papadhimitriou S Polychronopoulou AA Tsakiridou et al. 2005 p16 inactivation associated with aggressive clinical course and fatal outcome in TEL/AML1-positive acute lymphoblastic leukemia J Pediatr Hematol Oncol 27 675 677.

    • Search Google Scholar
    • Export Citation
  • 30. D Pinkel T Straume JW Gray 1986 Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization Proc Natl Acad Sci U S A 83 2934 2938.

    • Search Google Scholar
    • Export Citation
  • 31. CH Pui MV Relling JR Downing 2004 Acute lymphoblastic leukemia N Eng J Med 350 1535 1548.

  • 32. CH Pui EW Evans 2006 Treatment of acute lymphoblastic leukemia N Engl J Med 354 166 178.

  • 33. SC Raimondi SA Shurtleff JR Downing et al. 1997 12p abnormalities and the TEL gene (ETV6) in childhood acute lymphoblastic leukemia Blood 90 4559 4566.

    • Search Google Scholar
    • Export Citation
  • 34. SC Raimondi Y Zhou SA Shurtleff et al. 2006 Near-triploidy and near-tetraploidy in childhood acute lymphoblastic leukemia: association with B-lineage blast cells carrying the ETV6-RUNX1 fusion, T-lineage immunophenotype, and favorable outcome Cancer Genet Cytogenet 169 50 57.

    • Search Google Scholar
    • Export Citation
  • 35. NL Ramakers-van Woerden R Pieters AH Loonen et al. 2000 TEL/AML1 gene fusion is related to in vitro drug sensitivity for L-asparaginase in childhood acute lymphoblastic leukemia Blood 96 1094 1099.

    • Search Google Scholar
    • Export Citation
  • 36. HM Robinson ZJ Broadfield KL Cheung et al. 2003 Amplification of AML1 in acute lymphoblastic leukemia is associated with a poor outcome Leukemia 17 2249 2250.

    • Search Google Scholar
    • Export Citation
  • 37. HM Robinson CJ Harrison AV Moorman et al. 2007 Intrachromosomal amplification of chromosome 21 (iAMP21) may arise from a breakage-fusion-bridge cycle Genes Chromosomes Cancer 46 318 326.

    • Search Google Scholar
    • Export Citation
  • 38. SP Romana M Le Coniat R Berger 1994 t(12;21): a new recurrent translocation in acute lymphoblastic leukemia Genes Chromosomes Cancer 9 186 191.

    • Search Google Scholar
    • Export Citation
  • 39. SP Romana H Poirel M Leconiat et al. 1995 High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia Blood 86 4263 4269.

    • Search Google Scholar
    • Export Citation
  • 40. KR Schultz DJ Pullen HN Sather et al. 2007 Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children's Cancer Group (CCG) Blood 109 926 935.

    • Search Google Scholar
    • Export Citation
  • 41. M Schrappe A Reiter M Zimmermann et al. 2000 Long-term results of four consecutive trials in childhood ALL performed by the ALL-BFM study group from 1981 to 1995. Berlin-Frankfurt-Munster Leukemia 14 2205 2222.

    • Search Google Scholar
    • Export Citation
  • 42. K Seeger D Buchwald A Peter et al. 1999 TEL-AML1 fusion in relapsed childhood acute lymphoblastic leukemia Blood 94 374 376.

  • 43. K Seeger A von Stackelberg T Taube et al. 2001 Relapse of TEL-AML1-positive acute lymphoblastic leukemia in childhood: a matched-pair analysis J Clin Oncol 19 3188 3193.

    • Search Google Scholar
    • Export Citation
  • 44. SJ Shah JW Taub TL Witt et al. 2001 Relationship of p15 and p16 gene alterations to elevated dihydrofolate reductase in childhood acute lymphoblastic leukaemia Br J Haematol 113 746 756.

    • Search Google Scholar
    • Export Citation
  • 45. SA Shurtleff A Buijs FG Behm et al. 1995 TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis Leukemia 9 1985 1989.

    • Search Google Scholar
    • Export Citation
  • 46. MJ Sutcliffe JJ Shuster HN Sather et al. 2003 Outcome heterogeneity in childhood high-hyperdiploid acute lymphoblastic leukemia Blood 102 2756 2762.

    • Search Google Scholar
    • Export Citation
  • 47. MJ Sutcliffe JJ Shuster HN Sather et al. 2005 High concordance from independent studies by the Children's Cancer Group (CCG) and Pediatric Oncology Group (POG) associating favorable prognosis with combined trisomies 4, 10, and 17 in children with NCI Standard-Risk B-precursor Acute Lymphoblastic Leukemia: a Children's Oncology Group (COG) initiative Leukemia 19 734 740.

    • Search Google Scholar
    • Export Citation
  • 48. S Takeuchi T Seriu CR Bartram et al. 1997 TEL is one of the targets for deletion on 12p in many cases of childhood B-lineage acute lymphoblastic leukemia Leukemia 11 1220 1223.

    • Search Google Scholar
    • Export Citation