View More View Less
  • 1 Department of Chemometrics, Institute of Chemistry, Silesian University 9 Szkolna Street, 40-006, Katowice, Poland
  • | 2 Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University in Lublin 6 Staszica Street, 20-081, Lublin, Poland
Restricted access

Summary

In this paper a broad overview of the retention behaviour of twenty flavonoids and their analogues in 74 TLC systems is reported. The compounds were chromatographed on different stationary phases (non-polar and polar-bonded stationary phases — wettable RP18W, silica, and aminopropyl-modified and diol-modified plates) developed with a variety of binary mobile phases (aqueous and non-aqueous). The chemometric techniques principal component analysis and hierarchical clustering were used to evaluate similarities and differences among the chromatographic systems. For selection of the most suitable systems either to perform two-dimensional separation or to enhance overall resolution by merging two stationary phases, indices scoring the separating power of a given system or pair of systems were applied. When separation of all pairs of chromatographic systems was evaluated with the index considered, the theoretical separation achieved in these systems could be visualized as a colour map. This colour map enabled rapid examination of resolution and selection of orthogonal systems enabling acceptable separation of the compounds. On the basis of the colour map it was found that relatively efficient two-dimensional separation of the compounds could be achieved on amino-modified plates developed using 9:1 tetrahydrofuran-water in the first dimension then 9:1, 4:1, 3:1, or 7:3 acetonitrile-water in the second dimension. Theoretically, the best separation could be achieved by combining diol-modified and amino-modified stationary phases and using 3:2 methanol-water and 9:1 acetonitrile-water, respectively, as mobile phases.

  • [1]. E. Van Gyseghem S. Van Hemelryck M. Daszykowski F. Questier D.L. Massart Y. Vander Heyden 2003 J. Chromatogr. A 988 77.

  • [2]. P. Jandera K. Vyňuchalová T. Hájek P. Česla G. Vohralík 2008 J. Chemometrics 22 203.

  • [3]. A. Betti G. Lodi N. Fuzzati 1993 J. Planar Chromatogr. 6 232.

  • [4]. R.E. Mayors 2000 LC-GC Europe 13 232.

  • [5]. R.E. Mayors 2001 LC-GC Europe 14 284.

  • [6]. W. Steuer I. Grant F. Erni 1990 J. Chromatogr. 507 125.

  • [7]. D.W. Speicher 2004 Proteome Analysis Interpreting the Genome Elsevier Amsterdam.

  • [8]. M. Hawrył M. Waksmundzka-Hajnos 2006 J. Planar Chromatogr. 19 92.

  • [9]. M. Hawrył M. Waksmundzka-Hajnos T. Inglot 2005 J. Liq. Chromatogr. Related Technol. 28 2245.

  • [10]. D.R. Stoll X. Lia X. Wang P.W. Carr S.E.G. Porter S.C. Rutan 2007 J. Chromatogr. A 1168 3.

  • [11]. J. Dallüge J. Beens U.A.Th. Brinkman 2003 J. Chromatogr. A 1000 69.

  • [12]. M. Hawrył E. Soczewiński 2000 Chromatographia 52 175.

  • [13]. B.G.M. Vandeginste D.L. Massart L.M.C. Buydens S. de Jong P.J. Lewi J. Smeyers-Verbeke 1998 Handbook of Chemometrics and Qualimetrics, Part B Elsevier Amsterdam.

    • Search Google Scholar
    • Export Citation
  • [14]. M. Daszykowski B. Walczak D.L. Massart 2003 Chemom. Intell. Lab. Syst. 65 97.

  • [15]. M. Daszykowski 2007 J. Chemometrics 21 270.

  • [16]. D.L. Massart L. Kaufman 1989 The Interpretation of Analytical Data by the Use of Cluster Analysis Robert E. Krieger Malabar, Florida.

    • Search Google Scholar
    • Export Citation
  • [17]. N. Bratchell 1987 Chemom. Intell. Lab. Syst. 6 105.

  • [18]. Komsta W. Markowski G. Misztal 2007 J. Planar Chromatogr. 20 27.

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jan 2021 0 0 0
Feb 2021 2 0 0
Mar 2021 0 0 0
Apr 2021 5 0 0
May 2021 1 0 0
Jun 2021 6 0 0
Jul 2021 0 0 0